Root Exudates Metabolic Profiling Confirms Distinct Defense Mechanisms Between Cultivars and Treatments with Beneficial Microorganisms and Phosphonate Salts Against Verticillium Wilt in Olive Trees

Author:

Llorens Eugenio1,López-Moral Ana2,Agustí-Brisach Carlos2ORCID

Affiliation:

1. Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I de Castellón (UJI), 12006 Castellón de la Plana, Spain

2. Department of Agronomy (DAUCO, Unit of Excellence ‘María de Maeztu’ 2020-24), ETSIAM, University of Córdoba (UCO), Córdoba, Spain

Abstract

Root exudates play a key role in the life cycle of Verticillium dahliae, the causal agent of Verticillium wilt diseases, because they induce microsclerotia germination to initiate plant infection through the roots. In olive plants, the genotype and the application of biological control agents (BCAs) or phosphonate salts influence the ability of root exudates to decrease V. dahliae viability. Understanding the chemical composition of root exudates could provide new insights into the mechanisms of olive plant defense against V. dahliae. Therefore, the main goal of this study was to analyze the metabolomic profiles of root exudates collected from the olive cultivars Arbequina, Frantoio, and Picual subjected to treatment with BCAs ( Aureobasidium pullulans AP08, Bacillus amyloliquefaciens PAB-024) or phosphonate salts (copper phosphite, potassium phosphite). These treatments were selected due to their effectiveness as inducers of resistance against Verticillium wilt in olive plants. Our metabolomic analysis revealed that the olive cultivars exhibited differences in root exudates, which could be related to the different degrees of susceptibility to V. dahliae. The composition of root exudates also changed with the application of BCAs or phosphonate fertilizer, highlighting the complex and dynamic nature of the interactions between olive cultivars and treatments preventing V. dahliae infections. Thus, the identification of genotype-specific metabolic changes and specific metabolites induced by these treatments emphasizes the potential of resistance inducers for enhancing plant defense and promoting the growth of beneficial microorganisms.

Funder

Spanish Ministry of Science and Innovation

European Union FEDER Funds

Spanish State Research Agency through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D

Publisher

Scientific Societies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3