Potential Biocontrol Microorganisms Causing Attenuated Pathogenicity in Plasmopara viticola

Author:

Shi Xiaomeng12ORCID,Shen Hongmiao3,Wang Yacong1,Yang Xue1,Shi Ruolin1,Tan Wanzhong4,Ran Longxian12

Affiliation:

1. College of Forestry, Hebei Agricultural University, Baoding 071000, China

2. Key Laboratory of Forest Germplasm Resources and Forest Protection in Hebei Province, Baoding 071000, China

3. Center for Evaluation and Faculty Development, Hebei University of Economics and Business, Shijiazhuang 050061, China

4. College of Biotechnology and Engineering, West Yunnan University, Lincang 677000, China

Abstract

A phenomenon of pathogenicity attenuation of Plasmopara viticola was consistently observed during its subculture on grape. To clarify the causes of attenuated pathogenicity of P. viticola, culturable microbes were isolated from the P. viticola mass (mycelia, sporangiophores, and sporangia) in each generation and tested for their biocontrol efficacies on grape downy mildew (GDM). The results showed that the incidence of GDM decreased with the increase in the number of subculture times on both vineyard-collected leaves and grape leaves from in vitro-grown seedlings. The number of culturable microbial taxa on the surface of P. viticola decreased, whereas the population densities of four specific strains (i.e., K2, K7, P1, and P5) increased significantly with the increase in subculture times. Compared with the control, the biocontrol efficacies of the bacterial strain K2 reached 87.5%, and those of both fungal strains P1 and P5 reached 100.0%. Based on morphological characteristics and molecular sequences, strains K2, P1, and P5 were identified as Curtobacterium herbarum, Thecaphora amaranthi, and Acremonium sclerotigenum, respectively, and these three strains survived very well and multiplied on the surface of P. viticola. As the number of times P. viticola was subcultured increased, all three of these strains became the predominant strains, leading to greater P. viticola inhibition, attenuated P. viticola pathogenicity, and effective GDM biological control. To the best of our knowledge, this is the first report of C. herbarum and T. amaranthi having biological control activity against GDM.

Funder

National Key R&D Program of China

Special Fund for Agro-Scientific Research in the Public Interest of China

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3