Isolation and Identification of the Causal Agent of Top Rot and the Genetic Architecture of Resistance in Maize

Author:

Liu Huanhuan12ORCID,Zhao Chunyue1,Wang Yan1,Ye Shiyu1,He Yonghui12,Hu Qinying1,Yin Zhitong12

Affiliation:

1. Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China

2. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

Abstract

In maize (Zea mays), the disease known as “top rot” causes necrosis of the upper plant, disrupts tassel formation and pollen dispersal, and decreases yield. However, the causal agent, mode of pathogen infestation, and genetic architecture of resistance in maize remain to be explored. Here, to identify the causal agent, we isolated 41 fungal strains from maize plants infected with top rot. We classified these strains into six groups based on their morphological and molecular characteristics. Four species of Fusarium (F. fujikuroi, F. equiseti, F. proliferatum, and F. verticillioides) were able to cause top rot, with F. fujikuroi and F. equiseti being the main causal agents. Microscopic observations of a F. fujikuroi strain labeled with enhanced green fluorescent protein revealed that this pathogen first colonizes the stomata of leaves and then spreads through intercellular spaces, creating an expanding lesion. To dissect the genetic basis of maize resistance to top rot, we performed quantitative trait locus (QTL) mapping using a recombinant inbred line population constructed from the resistant parent LDC-1 and the susceptible parent YS501. Under natural conditions in Yangzhou and Hainan, we detected three and five QTLs, respectively, with qRtr7-1, located on chromosome 7, detected in both environments. Using inoculated seedlings, we detected three QTLs for resistance on chromosomes 1, 5, and 8. These results improve our understanding of maize top rot and provide a theoretical basis for its control.

Funder

Key Research and Development Program of Jiangsu Province

Jiangsu Government

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Agricultural Independent Innovation Fund of Jiangsu Province

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3