A Rapid, Equipment-Free Method for Detecting Avirulence Genes of Pyricularia oryzae Using a Lateral Flow Strip-Based RPA Assay

Author:

Qi Zhongqiang12ORCID,Ju Fangyi3,Guo Yunxia1,Du Yan1,Yu Junjie1,Zhang Rongsheng1,Yu Mina1,Cao Huijuan1,Song Tianqiao1,Pan Xiayan1,Dai Tingting3ORCID,Liu Yongfeng12ORCID

Affiliation:

1. Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China

2. IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China

3. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China

Abstract

Rice blast, caused by Pyricularia oryzae, is one of the most destructive rice diseases worldwide. Using resistant rice varieties is the most cost-effective way to control rice blast. Consequently, it is critical to monitor the distribution frequency of avirulence (Avr) genes in rice planting fields to facilitate the breeding of resistant rice varieties. In this study, we established a rapid recombinase polymerase amplification–lateral flow dipstick (RPA-LFD) detection system for the identification of AvrPik, Avr-Piz-t, and Avr-Pi9. The optimized reaction temperature and duration were 37°C and 20 min, indicating that the reaction system could be initiated by body temperature without relying on any precision instruments. Specificity analysis showed that the primer and probe combinations targeting the three Avr genes exhibited a remarkable specificity at genus-level detection. Under the optimized condition, the lower detected thresholds of AvrPik, Avr-Piz-t, and Avr-Pi9 were 10 fg/μl, 100 fg/μl, and 10 pg/μl, respectively. Notably, the detection sensitivity of the three Avr genes was much higher than that of PCR. In addition, we also successfully detected the presence of AvrPik, Avr-Piz-t, and Avr-Pi9 in the leaf and panicle blast lesions with the RPA-LFD detection system. In particular, the genomic DNA was extracted using the simpler PEG-NaOH rapid extraction method. In summary, we developed an RPA detection system for AvrPik, Avr-Pi9, and Avr-Piz-t, combined with the PEG-NaOH rapid DNA extraction method. The innovative approach achieved rapid, real-time, and accurate detection of the three Avr genes in the field, which is helpful to understand the distribution frequency of the three Avr genes in the field and provide theoretical reference for the scientific layout of resistant rice varieties.

Funder

National Key Research and Development Program of China

Jiangsu Agricultural Science and Technology Innovation Foundation

Revitalization Foundation of Seed Industry of Jiangsu

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3