Virulence and Molecular Characterization of Experimental Isolates of the Stripe Rust Pathogen (Puccinia striiformis) Indicate Somatic Recombination

Author:

Lei Yu1,Wang Meinan1,Wan Anmin1,Xia Chongjing1,See Deven R.1,Zhang Min1,Chen Xianming1

Affiliation:

1. First and sixth authors: Agricultural College, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; first, second, third, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and fifth and seventh: United States Department of Agriculture–Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430.

Abstract

Puccinia striiformis causes stripe rust on wheat, barley, and grasses. Natural population studies have indicated that somatic recombination plays a possible role in P. striiformis variation. To determine whether somatic recombination can occur, susceptible wheat or barley plants were inoculated with mixed urediniospores of paired isolates of P. striiformis. Progeny isolates were selected by passing through a series of inoculations of wheat or barley genotypes. Potential recombinant isolates were compared with the parental isolates on the set of 18 wheat or 12 barley genotypes that are used to differentiate races of P. striiformis f. sp. tritici (the wheat stripe rust pathogen) and P. striiformis f. sp. hordei (the barley stripe rust pathogen), respectively, for virulence changes. They were also tested with 51 simple-sequence repeat and 90 single-nucleotide polymorphism markers for genotype changes. From 68 possible recombinant isolates obtained from nine combinations of isolates based on virulence tests, 66 were proven to be recombinant isolates by molecular markers. Various types of recombinants were determined, including lost virulence from both virulent parental isolates, gained virulence from both avirulent isolates, combined virulences from both parents, and inherited virulence from one parent and avirulence from another. Marker data indicate that most of the recombinants were produced through chromosome reassortment and crossover after the hybridization of two parental isolates. The results demonstrate that somatic recombination is a mechanism by which new variants can be generated in P. striiformis.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3