Mitigating an Epidemic of Resistance with Integrated Disease Management Tactics: Conflicting Management Recommendations from Insecticide Resistance and Epidemiological Models

Author:

Sisterson Mark S.1ORCID

Affiliation:

1. U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757

Abstract

Insect-transmitted plant pathogens threaten crop production worldwide. Because a single feeding bout may be sufficient for a vector to transmit a pathogen that kills the plant, treatment thresholds for vectors of plant pathogens are low. For many vector species, overreliance on chemical controls has resulted in evolution of insecticide resistance. Analysis of complementary insecticide resistance and epidemiological models indicated that tactics for delaying resistance evolution conflict with tactics for limiting pathogen spread. Insecticide resistance models support maintaining untreated refuges that serve as a source of susceptible insects that reduce the likelihood of mating among rare resistant insects. In contrast, epidemiological models indicate that movement of vectors from untreated areas to insecticide-treated areas contributes to pathogen spread. Accordingly, epidemiological models support area-wide insecticide spray programs, although resistance models indicate that such an approach is likely to lead to rapid resistance. To mitigate risk of insecticide resistance, additional management approaches must be integrated into plant disease management strategies. The resistance and epidemiological models were used to evaluate effects of integrating application of insecticides with two additional management strategies: deployment of partially resistant plants (plants that are not immune to infection but have lower acquisition and inoculation rates than susceptible plants) and mating disruption (reduced vector birth rate in mating disruption-treated areas). Deployment of partially resistant plants reduced the risk that untreated areas served as a source of inoculative vectors. Mating disruption reduced the risk of resistance by suppressing growth of insecticide-resistant populations and benefited disease management by reducing vector abundance. Simulation results indicated that by targeting multiple aspects of the plant–pathogen–vector system, pathogen spread could be suppressed and resistance delayed. Implementation of such an approach will require innovations in vector control and sustained efforts in plant breeding.

Funder

U.S. Department of Agriculture-Agricultural Research Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3