A Glutathione S-Transferase from Thinopyrum ponticum Confers Fhb7 Resistance to Fusarium Head Blight in Wheat

Author:

Zhao Lanfei1,Bernardo Amy2,Kong Fanmei1,Zhao Wei1,Dong Yanhong3,Lee Hyeonju4,Trick Harold N.4,Noller Jessica Rupp4,Bai Guihua12ORCID

Affiliation:

1. Department of Agronomy, Kansas State University, 2004 Throckmorton Hall, Manhattan, KS 66506

2. U.S. Department of Agriculture, Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Hall, Manhattan, KS 66506

3. Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108

4. Department of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan, KS 66506

Abstract

Fusarium head blight (FHB), mainly incited by Fusarium graminearum, has caused great losses in grain yield and quality of wheat globally. Fhb7, a major gene from 7E chromosome of Thinopyrum ponticum, confers broad resistance to multiple Fusarium species in wheat and has recently been cloned and identified as encoding a glutathione S-transferase ( GST). However, some recent reports raised doubt about whether GST is the causal gene of Fhb7. To resolve the discrepancy and validate the gene function of GST in wheat, we phenotyped Fhb7 near-isogenic lines (Jimai22- Fhb7 versus Jimai22) and GST overexpressed lines for FHB resistance. Jimai22- Fhb7 showed significantly higher FHB resistance with a lower percentage of symptomatic spikelets, Fusarium-damaged kernels, and deoxynivalenol content than susceptible Jimai22 in three experiments. All the positive GST transgenic lines driven by either the maize ubiquitin promoter or its native promoter with high gene expression in the wheat cultivar ‘Fielder’ showed high FHB resistance. Only one maize ubiquitin promoter-driven transgenic line showed low GST expression and similar susceptibility to Fielder, suggesting that high GST expression confers Fhb7 resistance to FHB. Knockout of GST in the Jimai22- Fhb7 line using CRISPR-Cas9-based gene editing showed significantly higher FHB susceptibility compared with the nonedited control plants. Therefore, we confirmed GST as the causal gene of Fhb7 for FHB resistance. Considering its major effect on FHB resistance, pyramiding Fhb7 with other quantitative trait loci has a great potential to create highly FHB-resistant wheat cultivars.

Funder

U.S. Department of Agriculture-Agriculture and Food Research Initiative Competitive Grant

U.S. Wheat and Barley Scab Initiative Grant

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3