Resistance to seven site-specific fungicides in Botrytis cinerea from greenhouse-grown ornamentals

Author:

Lukasko Nicole Taylor1,Hausbeck Mary2

Affiliation:

1. Michigan State University, 3078, Plant, Soil, and Microbial Sciences, 612 Wilson Road, 140 Plant Biology, East Lansing, Michigan, United States, 48824-1312;

2. Michigan State University, Plant Pathology, 140 Plant Biology Lab, East Lansing, Michigan, United States, 48824;

Abstract

The fungal pathogen Botrytis cinerea is a notorious problem on many floriculture greenhouse hosts including petunia, geranium, and poinsettia; these key crops contribute to the $6.43 billion ornamental U.S. industry. While growers use cultural strategies to reduce relative humidity and free moisture to limit Botrytis blight, fungicides remain a primary component of control programs. Isolates (n = 386) of B. cinerea sampled from symptomatic petunia, geranium, and poinsettia in Michigan greenhouses from 2018-2021 were screened for resistance to eight fungicides belonging to 7 FRAC groups. Single-spored isolates were subjected to a germination-based assay using previously defined discriminatory doses of each fungicide. Resistance was detected to thiophanate-methyl (FRAC 1; 94%), pyraclostrobin (FRAC 11; 80%), boscalid (FRAC 7; 67%), iprodione (FRAC 2; 65%), fenhexamid (FRAC 17; 38%), cyprodinil (FRAC 9; 38%), fludioxonil (FRAC 12; 21%) and fluopyram (FRAC 7; 13%). Most isolates (63.5%) were resistant to at least four FRAC groups, with 8.7% of all isolates demonstrating resistance to all seven FRAC groups tested. Resistance frequencies for each fungicide were similar among crops, production regions, and growing cycles, but varied significantly for each greenhouse. Phenotypic diversity was high, as indicated by the 48 different fungicide resistance profiles observed. High frequencies of resistance to multiple fungicides in B. cinerea populations from floriculture hosts highlight the importance of sustainable, alternative disease management practices for greenhouse growers.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3