Complete Genome Characterization and Coat Protein Genealogy of Isolates of Maize dwarf mosaic virus from Johnsongrass and Maize in Oklahoma and Missouri

Author:

Wijayasekara Dulanjani1,Ali Akhtar1ORCID

Affiliation:

1. Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, U.S.A.

Abstract

Maize dwarf mosaic virus (MDMV) significantly affects maize production worldwide, including the United States. This study describes the distribution and biological and molecular characterization of MDMV isolates from Johnsongrass and maize. A total of 262 samples (symptomatic = 214, asymptomatic = 48) were collected in Oklahoma and Missouri during 2016, 2017, and 2019 growing seasons. Based on a dot-immunobinding assay (DIBA), the average incidence of maize dwarf mosaic disease varied from ∼71% (79/111) in 2016, ∼76% (81/106) in 2017, and 62% (28/45) in 2019. Sixty-five DIBA-positive samples for MDMV were further confirmed by RT-PCR, and the complete coat protein (CP) gene was cloned and sequenced. Phylogenetic analysis of 132 isolates (This study = 65; GenBank = 67) revealed two main groups (G1 and G2) of MDMV isolates. All 65 MDMV isolates contained a 39-nucleotide insertion in the N-terminal region of CP genes and clustered in G1 which were different from the isolates in G2, without 39-nucleotide insertion. The first complete genome (9,563 nucleotides) of a MDMV isolate (Bixby1) from Johnsongrass was sequenced, which was distantly related to eight previously reported MDMV isolates from maize. The dN/dS ratio showed mostly purifying selection on each of cistrons except 6K1 being subjected to the diversifying selection. Further analyses revealed three putative recombination events between MDMV-Bixby1 and MDMV isolates from other countries. The successful mechanical and aphid transmission of MDMV-Bixby1 onto maize cultivars was achieved. Altogether, this information showed that Johnsongrass harbors genetically diverse MDMV isolates, which could pose a threat to cultivated crops such as maize and sorghum.

Funder

USDA National Institute of Food and Agriculture

Office of Research and Sponsored Program, The University of Tulsa

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3