Winter Rye Cover Crops Shelter Competent Squash Phyllosphere Bacteria to Reduce Pseudomonas syringae pv. lachrymans Growth and Angular Leaf Spot Symptoms

Author:

Maglione Rémi12ORCID,Ciotola Marie1,Cadieux Mélanie1,Toussaint Vicky1ORCID,Laforest Martin1ORCID,Kembel Steven W.2ORCID

Affiliation:

1. Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada

2. Département des Sciences Biologiques, Université du Québec à Montréal, QC, Canada

Abstract

Cover crops, a soil conservation practice, can contribute to reducing disease pressure caused by Pseudomonas syringae, considered one of the most important bacterial plant pathogens. We recently demonstrated that the phyllosphere (leaf surface) bacterial community structure changed when squash ( Cucurbita pepo) was grown with a rye ( Secale cereale) cover crop treatment, followed by a decrease of angular leaf spot disease symptoms on squash caused by P. syringae pv.  lachrymans. Application of biocontrol agents is a known agricultural practice to mitigate crop losses due to microbial disease. In this study, we tested the hypothesis that some phyllosphere bacteria promoted when squash is grown on cover crops could be isolated and used as a biocontrol agent to decrease angular leaf spot symptoms. We grew squash during a 2-year field experiment using four agricultural practices: bare soil, cover crops, chemically terminated cover crops, and plastic cover. We sampled squash leaves at three different dates each year and constructed a collection of cultivable bacterial strains isolated from squash leaves and rye cover crop material. Each isolated strain was identified by 16S rRNA gene sequencing and used in in vitro (Petri dish) pathogen growth and in vivo (greenhouse) symptom control assays. Four bacterial isolates belonging to the genera Pseudarthrobacter, Pseudomonas, Delftia, and Rhizobium were shown to inhibit P. syringae pv. lachrymans growth and angular leaf spot symptom development. Strikingly, the symptom control efficacy of all strains was stronger on older leaves. This study sheds light on the importance of bacterial isolation from cover crop sources to promote disease control. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

Agriculture and Agri-Food Canada R&D

Natural Sciences and Engineering Research Council of Canada Discovery Grant

Canada Research Chair

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3