Field Strains of Monilinia fructicola Resistant to Both MBC and DMI Fungicides Isolated from Stone Fruit Orchards in the Eastern United States

Author:

Chen F.1,Liu X.1,Schnabel G.2

Affiliation:

1. College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193

2. School of Agricultural, Forest & Environmental Sciences, Clemson University, Clemson, SC 29634

Abstract

In 2012, significant brown rot disease was observed on stone fruit in Pennsylvania, Maryland, and South Carolina despite preharvest application of methyl benzimidazole carbamate (MBC) and demethylase inhibitor (DMI) fungicides. In total, 140 Monilinia fructicola isolates were collected from diseased orchards and examined for fungicide sensitivity. In addition to isolates resistant to either the DMI propiconazole or the MBC thiophanate-methyl, 22 isolates were discovered that were resistant to both fungicides, including 4 isolates from peach in South Carolina, 12 isolates from peach and sweet cherry in Maryland, and 6 isolates from sweet cherry in Pennsylvania. Analysis of MBC resistance revealed that dual-resistant isolates from South Carolina carried the β-tubulin E198A mutation, whereas isolates from Maryland and Pennsylvania carried E198 mutations not previously described in the Monilinia genus, E198Q or F200Y. The genetic element Mona, associated with DMI fungicide resistance in M. fructicola, was detected in the dual-resistant isolates from South Carolina but not in the isolates from the two more northern states. An investigation into the molecular mechanism of DMI resistance in the latter isolates revealed that resistance was not based on increased expression or mutation of MfCYP51, which encodes the target of DMI fungicides. Label rates of formulated propiconazole or thiophanate-methyl were unable to control dual-resistant isolates on detached peach fruit, confirming field relevance of dual resistance. The same isolates were not affected by fitness penalties based on mycelial growth rate, ability to sporulate, and virulence on detached peach fruit. The emergence of M. fructicola strains resistant to both DMI and MBC fungicides in multiple states and multiple stone fruit crops is a significant development and needs to be considered when designing resistance management strategies in stone fruit orchards.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3