First Report of Taro (Colocasia esculenta) Leaf Blight Caused by Phytophthora colocasiae in Nigeria

Author:

Bandyopadhyay R.1,Sharma K.1,Onyeka T. J.2,Aregbesola A.1,Kumar P. Lava3

Affiliation:

1. International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria

2. National Root Crops Research Institute (NRCRI), Umudike, PMB 7006, Umuahia, Nigeria

3. IITA, PMB 5320, Ibadan, Nigeria

Abstract

In November 2009, many farmers in Abia State were alarmed by complete destruction of their taro (Colocasia esculenta (L.) Schott.) crop. Symptoms, suggestive of leaf blight caused by Phytophthora colocasiae Raciborski (2), began as small, brown, water-soaked lesions that rapidly enlarged to form large, dark brown, coalescing lesions, sometimes with orange host exudations. White sporulation was evident on the lesion surface under wet conditions. The pathogen caused rapid defoliation and killed plants. The epidemic was widespread in 2010 during the rainy season (April to November) in all taro-growing areas of Nigeria. Diseased leaves were collected from taro in Iwo Village near Ibadan, cut into 4-cm2 pieces, washed in several changes of sterile water, and incubated in petri dishes lined with wet filter paper at 22°C. Newly produced sporangia were collected from the incubated leaves and plated on a selective medium (1). Sporangia were hyaline, papillate, and measured 25 to 55 × 15 to 30 μm. Zoospores encysted within 30 min after release; cysts were 9.7 to 19.5 μm in diameter. Sporangia and zoospore formation were induced in water and by chilling, respectively (1). Two leaves each of three 1-month-old taro and three Xanthosoma plants (both unknown clones) and six detached leaves of taro were inoculated with a 1 × 105/ml zoospore suspension of isolates PC01 and PC02. Detached leaves were incubated in moist chambers at 22°C. Plants were covered with polyethylene bags for 12 h after inoculation and maintained in a screenhouse. Water-soaked lesions appeared on detached leaves within 24 h postinoculation and the leaves were completely rotted 48 h later. All inoculated attached leaves of taro, but not Xanthosoma, showed typical leaf blight symptoms including abundant sporangial production. Noninoculated control detached leaves and plants were disease free. Sporangia from detached and attached inoculated leaves, when plated on selective medium, produced typical P. colocasiae colonies. The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1 and ITS4 primers (3). Amplicons (786 bp) were sequenced in both directions and submitted to GenBank (Accession Nos. HQ602756, HQ602757, HQ602758, and HQ602759). A BLASTn search revealed 99% similarity to a P. colocasiae strain of the Pacific Region (Accession No. GU111604), but only 94% similarity to a P. colocasiae strain from India (Accession No. GQ202149). The sequence analysis, morphological characteristics, and pathogenicity test confirmed the taro leaf blight pathogen as P. colocasiae. There are previous reports of occurrence of taro blight-like disease attributed to P. colocasiae in Ethiopia, Equatorial Guinea (1), and more recently in Cameroon, but comprehensive details on pathogen or disease are not available. To our knowledge, this is the first confirmed record in Nigeria of P. colocasiae causing taro blight. This disease poses a serious threat to the production and biodiversity of this important food crop. Urgent interventions are necessary to halt this emerging epidemic in West and Central Africa. References: (1) Phytophthora colocasiae, In: CABI-Crop Protection Compendium. CAB International, Wallingford, UK, 2005. (2) P. S. Tsao. Page 219 in: Phytophthora: Its Biology, Taxonomy, Ecology and Pathology. The American Phytopathological Society. St. Paul, MN, 1983. (3) T. J. White et al. Page 315 in: PCR Protocol: A Guide to Methods and Applications. Academic Press, London. 1990.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3