Affiliation:
1. School of Agriculture and Biology, Shanghai Jiao Tong University/State Key Laboratory of Microbial Metabolism/Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, Shanghai 200240, P.R. China
2. Dalian Wafangdian Agricultural Technology Extension Service Center, Dalian 116300, P.R. China
Abstract
Tomato gray mold caused by Botrytis cinerea is one of the main diseases of tomato and significantly impacts the yield and quality of tomato fruit. The overuse of chemical fungicides has resulted in the development of fungicide-resistant strains. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional synthetic chemical fungicides and genus Trichoderma is widely used as a biological agent for controlling tomato gray mold. Brassinolide (BR) is a plant-growth-promoting steroid. To enhance the efficiency and stability of Trichoderma activity against B. cinerea, an optimal combination of Trichoderma atroviride CCTCCSBW0199 and BR that controls B. cinerea infection in tomato was identified. Strain CCTCCSBW0199 was found to have antagonistic activity against B. cinerea both in vitro and in vivo. In addition, a fermented culture of chlamydospores and metabolites, or metabolites only of strain CCTCCSBW0199 also reduced growth of B. cinerea. BR reduced growth of B. cinerea and had no effect on the sporulation and growth of Trichoderma spp. An application of metabolites of a Trichoderma sp. + BR reduced gray mold on tomato leaves by approximately 70.0%. Furthermore, the activities of induced defense response-related enzyme, such as peroxidase, superoxide dismutase, catalase, and phenylalanine ammonia-lyase were increased in tomato plants treated with a Trichoderma sp. + BR. Our data suggested that applying a mix of metabolites of T. atroviride CCTCCSBW0199 + BR was effective at reducing gray mold of tomato and may lay a theoretical foundation for the development of novel biofungicides.
Funder
National Key Research and Development Program of China
Key International Intergovernmental Scientific and Technological Innovation Cooperation Project
National Natural Science Foundation of China
Earmarked Fund for the China Agriculture Research System
Key Project of the Shanghai Committee of Science and Technology
Shanghai Agriculture Extension Project
Agriculture Research System of Shanghai, China
Subject
Plant Science,Agronomy and Crop Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献