Evidence for a Phytoreovirus Associated with Tobacco Exhibiting Leaf Curl Symptoms in South Africa

Author:

Rey Marie Emma Christine,D'Andrea Elvera,Calvert-Evers Jennifer,Paximadis Maria,Boccardo Guido

Abstract

Three forms of tobacco leaf curl (termed classes I, II, and III, based on symptomatology) recently have been described in southern Africa. Numerous attempts to isolate virus particles responsible for a nongeminivirus-induced leaf curl disease (class I) of tobacco in South Africa have been unsuccessful. Recently, 12 dsRNA segments were isolated from tobacco exhibiting class I leaf curl symptoms, suggesting a possible reovirus genome. The objective of our study was to confirm whether the dsRNA segments are associated with a reovirus. Isolation of icosahedral particles with an outer core 60 to 65 nm in diameter and an inner core 40 to 45 nm in diameter was achieved. Twelve distinct nonpolyadenylated dsRNAs were isolated from purified virions, and the total molecular masses of the dsRNAs ranged from 17.86 to 18.40 × 106 Da in polyacrylamide and agarose gels, respectively. Using hybridization analysis, dsRNAs were identified as non-homologous distinct segments. Comparisons with other known reoviruses revealed a unique banding pattern that was most similar to the wound tumor virus (WTV), the type species of the genus Phytoreovirus. Hybridizations of WTV cloned DNA probes (segments S4 and S6 to S9) and dsRNAs from infected tobacco indicated no significant sequence similarity, whereas indirect enzyme-linked immunosorbent assay with a polyclonal antiserum to WTV showed strong positive cross-reactivity to tobacco virions. Our results indicate a virus with features consistent with those of phytoreoviruses. This is the first report of a plant reovirus in tobacco, the first record in Africa, and the second example of a field-isolated dicot phytoreovirus.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3