Mapping the Environmental Risk of Beech Leaf Disease in the Northeastern United States

Author:

Zhao Yongquan12ORCID,Bonello Pierluigi3ORCID,Liu Desheng2

Affiliation:

1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

2. Department of Geography, The Ohio State University, Columbus, OH 43210, U.S.A.

3. Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A.

Abstract

The recently emerged beech leaf disease (BLD) is causing the decline and death of American beech in North America. First observed in 2012 in northeast Ohio, U.S.A., BLD had been documented in 10 northeastern states and the Canadian province of Ontario as of July 2022. A foliar nematode has been implicated as the causal agent, along with some bacterial taxa. No effective treatments have been documented in the primary literature. Irrespective of potential treatments, prevention and prompt eradication (rapid responses) remain the most cost-effective approaches to the management of forest tree disease. For these approaches to be feasible, however, it is necessary to understand the factors that contribute to BLD spread and use them in estimation of risk. Here, we conducted an analysis of BLD risk across northern Ohio, western Pennsylvania, western New York, and northern West Virginia, U.S.A. In the absence of symptoms, an area cannot necessarily be deemed free of BLD (i.e., absence of BLD cannot be certain) due to its fast spread and the lag in symptom expression (latency) after infection. Therefore, we employed two widely used presence-only species distribution models (SDMs), one-class support vector machine (OCSVM), and maximum entropy (Maxent) to predict the spatial pattern of BLD risk based on BLD presence records and associated environmental variables. Our results show that both methods work well for BLD environmental risk modeling purposes, but Maxent outperforms OCSVM with respect to both the quantitative receiver operating characteristics (ROC) analysis and the qualitative evaluation of the spatial risk maps. Meanwhile, the Maxent model provides a quantification of variable contribution for different environmental factors, indicating that meteorological (isothermality and temperature seasonality) and land cover type (closed broadleaved deciduous forest) factors are likely key contributors to BLD distribution. Moreover, the future trajectories of BLD risk over our study area in the context of climate change were investigated by comparing the current and future risk maps obtained by Maxent. In addition to offering the ability to predict where the disease may spread next, our work contributes to the epidemiological characterization of BLD, providing new lines of investigation to improve ecological or silvicultural management. Furthermore, this study shows strong potential for extension of environmental risk mapping over the full American beech distribution range so that proactive management measures can be put in place. Similar approaches can be designed for other significant or emerging forest pest problems, contributing to overall management efficiency and efficacy.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3