Affiliation:
1. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China; and
2. U.S. Vegetable Laboratory, USDA-Agricultural Research Service, Charleston, SC, U.S.A.
Abstract
Cucumber green mottle mosaic virus (CGMMV), an emerging tobamovirus, has caused serious disease outbreaks to cucurbit crops in several countries, including the United States. Although CGMMV is seed-borne, the mechanism of its transmission from a contaminated seed to germinating seedling is still not fully understood, and the most suitable seed health assay method has not been well established. To evaluate the mechanism of seed transmissibility, using highly contaminated watermelon seeds collected from CGMMV-infected experimental plants, bioassays were conducted in a greenhouse through seedling grow-out and by mechanical inoculation. Through natural seedling grow-out, we did not observe seed transmission of CGMMV to germinating seedlings. However, efficient transmission of CGMMV was observed using bioassays on melon plants through mechanical inoculation of seed extract prepared from CGMMV-contaminated seeds. Understanding the seed-borne property and the ease of mechanical transmission of CGMMV from a contaminated seed to seedling is an important finding. In comparative evaluation of various laboratory techniques for seed health assays, we found that enzyme-linked immunosorbent assay and loop-mediated isothermal amplification were the most sensitive and reliable methods to detect CGMMV on cucurbit seeds. Because CGMMV is a seed-borne and highly contagious virus, a new infection might not result in a natural seedling grow-out; it could occur through mechanical transmission from contaminated seeds. Therefore, a sensitive seed health test is necessary to ensure CGMMV-free seed lots are used for planting.
Funder
National Institute of Food and Agriculture
Alberta Crop Industry Development Fund
China Scholarship Council
Subject
Plant Science,Agronomy and Crop Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献