First Report of Leaf Spot of Dieffenbachia picta and Aglaonema commutatum Caused by Burkholderia gladioli in Argentina

Author:

Alippi A. M.1,López A. C.1

Affiliation:

1. CIDEFI – CIC - CONICET, Facultad de Ciencias Agrarias y Forestales, UNLP, cc 31, 1900 La Plata, Argentina

Abstract

During May of 2008 (austral autumn), an uncharacterized disease was observed on Dieffenbachia picta (Lodd.) Schott and Aglaonema commutatum Schott in commercial greenhouses in Pontevedra (34°45′6″S, 58°42′42″W), Argentina. Affected plants showed irregular, brown lesions on leaves, approximately 15 to 20 mm in diameter, surrounded by water-soaked haloes that progressed inward from the margins. Water-soaked rotting symptoms were also observed in petioles. Disease incidence approached 80%. Abundant bacterial streaming was observed from lesions when examined at ×100. Bacteria consistently isolated from lesions formed cream-colored, glistening, convex colonies on sucrose peptone agar and produced a yellowish green, diffusible, nonfluorescent pigment on King's medium B. Four isolates from different symptomatic plants were selected for further study. All were aerobic, gram-negative rods that accumulated poly-β-hydroxybutyrate inclusions. In LOPAT tests, all induced a hypersensitive response in tobacco plants, caused soft rot of potato tubers, and were positive for levan, negative for arginine dihydrolase, and variable for oxidase. All isolates oxidized glucose, did not hydrolyze starch and were able to rot onion slices. Colonies developed at 41°C but not at 4°C. With the API 20NE test strips and database (bioMerieux, Buenos Aires, Argentina), all isolates matched (99% identity) Burkholderia cepacia, but their inability to metabolize cellobiose and sucrose further identified them as B. gladioli. For molecular identification, 23S rDNA was amplified by PCR using B. gladioli-specific primers LP1 and LP4, which yielded a 700-bp product (3), and PCR-restriction fragment length polymorphism of 16S rDNA using AluI (2). PCR products were identical to those from the type strain for B. gladioli, ICMP 3950, isolated from Gladiolus spp. that had been included in all tests for comparison. Pathogenicity was verified on D. picta and A. commutatum by spraying the plants with bacterial suspensions in sterile distilled water at 108 CFU/ml with and without wounding the leaves with a sterile needle and also by injection-infiltration of bacterial suspensions at 105 CFU/ml. In addition, another host plant, Gladiolus communis L., was inoculated in the same manner. Controls were sprayed or infiltrated with sterile distilled water. After 48 h in a humidity chamber, plants were kept at 25 ± 3°C in a greenhouse. In all hosts, symptoms were first detected 3 days after inoculation and lesions expanded to resemble natural infections within 4 to 7 days. All strains caused necrosis around the inoculation sites and lesions were identical to those induced by the ICMP reference strain. Bacteria were reisolated from each host tested and then the original and reisolated strains were compared by enterobacterial repetitive intergeneric consensus-PCR (1); DNA fingerprints of the reisolated strains were identical to those of the original strains, thereby fulfilling Koch's postulates. No lesions were observed on controls or on plants inoculated by spraying without wounding, suggesting that bacteria gain entry through wounds. On the basis of PCR and physiological tests the pathogen was identified as B. gladioli (2–4). To our knowledge, this is the first report of B. gladioli on Dieffenbachia and Aglaonema spp. References: (1) F. J. Louws et al. Appl. Environ. Microbiol. 60:2286, 1994. (2) C. Van Pelt et al. J. Clin. Microbiol. 37:2158, 1999. (3) P. W. Whitby et al. J. Clin. Microbiol. 38:282, 2000. (4) E. Yabuuchi et al. Microbiol. Immunol. 36:1251, 1992.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3