Investigating In Vitro Mating Preference Between or Within the Two Forms of Pyrenophora teres and Its Hybrids

Author:

Dahanayaka Buddhika A.1,Vaghefi Niloofar1,Snyman Lislé2,Martin Anke1ORCID

Affiliation:

1. Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia

2. Department of Agriculture and Fisheries Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia

Abstract

Net blotch diseases result in significant yield losses to barley industries worldwide. They occur as net-form and spot-form net blotch caused by Pyrenophora teres f. teres and P. teres f. maculata, respectively. Hybridization between the forms was proposed to be rare, but recent identifications of field hybrids has renewed interest in the frequency and mechanisms underlying hybridization. This study investigates the mating preference of P. teres f. teres, P. teres f. maculata, and laboratory-produced hybrids in vitro, using 24 different isolates and four different experimental setups. Two crosses in our study produced ascospores during two intervals separated by a 32- to 35-day period of no ascospore production. For these crosses, P. teres f. teres isolates mated with isolates of the same form during the early ascospore production interval, and produced hybrids during the later interval. P. teres f. maculata isolates did not mate with isolates of the same form, but instead hybridized with P. teres f. teres isolates. Analyses based on DArTseq markers confirmed that laboratory-produced hybrids, when given the choice to mate with both P. teres f. teres and P. teres f. maculata, mated with P. teres f. teres isolates. These results unravel a novel concept that P. teres f. teres seems to have a greater reproduction vigor than P. teres f. maculata, which could lead to increased prevalence of hybrid incidences in vivo.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3