Protein Expression Profiles in an Endosymbiotic Cyanobacterium Revealed by a Proteomic Approach

Author:

Ekman Martin,Tollbäck Petter,Klint Johan,Bergman Birgitta

Abstract

Molecular mechanisms behind adaptations in the cyano-bacterium (Nostoc sp.) to a life in endosymbiosis with plants are still not clarified, nor are the interactions between the partners. To get further insights, the proteome of a Nostoc strain, freshly isolated from the symbiotic gland tissue of the angiosperm Gunnera manicata Linden, was analyzed and compared with the proteome of the same strain when free-living. Extracted proteins were separated by two-dimensional gel electrophoresis and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with tandem mass spectrometry. Even when the higher percentage of differentiated cells (heterocysts) in symbiosis was compensated for, the majority of the proteins detected in the symbiotic cyanobacteria were present in the free-living counterpart, indicating that most cellular processes were common for both stages. However, differential expression profiling revealed a significant number of proteins to be down-regulated or missing in the symbiotic stage, while others were more abundant or only expressed in symbiosis. The differential protein expression was primarily connected to i) cell envelope-associated processes, including proteins involved in exopolysaccharide synthesis and surface and membrane associated proteins, ii) to changes in growth and metabolic activities (C and N), including upregulation of nitrogenase and proteins involved in the oxidative pentose phosphate pathway and downregu-lation of Calvin cycle enzymes, and iii) to the dark, micro-aerobic conditions offered inside the Gunnera gland cells, including changes in relative phycobiliprotein concentrations. This is the first comprehensive analysis of proteins in the symbiotic state.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3