Affiliation:
1. Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011-1101, U.S.A.
Abstract
The predicted repertoire of type III secretion system effectors (T3SEs) in Erwinia tracheiphila, causal agent of cucurbit bacterial wilt, is much larger than in xylem pathogens in the closely related genera Erwinia and Pantoea. The genomes of strains BHKY and SCR3, which represent distinct E. tracheiphila clades, encode at least 6 clade-specific and 12 shared T3SEs. The strains expressed the majority of the T3SE genes examined in planta. Among the shared T3SE genes, eop1 was expressed most highly in both strains in squash ( Cucurbita pepo) and muskmelon ( Cucumis melo) but the clade-specific gene avrRpm2 was expressed 40- to 900-fold more than eop1 in BHKY. The T3SEs AvrRpm2, Eop1, SrfC, and DspE contributed to BHKY virulence on squash and muskmelon, as shown using combinatorial mutants involving six T3SEs, whereas OspG and AvrB4 contributed to BHKY virulence only on muskmelon, demonstrating host-specific virulence functions. Moreover, Eop1 was functionally redundant with AvrRpm2, SrfC, OspG, and AvrB4 in BHKY, and BHKY mutants lacking up to five effector genes showed similar virulence to mutants lacking only two genes. The T3SEs OspG, AvrB4, and DspE contributed additively to SCR3 virulence on muskmelon and were not functionally redundant with Eop1. Rather, loss of eop1 and avrB4 restored wild-type virulence to the avrB4 mutant, suggesting that Eop1 suppresses a functionally redundant effector in SCR3. These results highlight functional differences in effector inventories between two E. tracheiphila clades, provide the first evidence of OspG as a phytopathogen effector, and suggest that Eop1 may be a metaeffector influencing virulence. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Funder
Iowa State University Presidential Fellowship
College of Agriculture and Life Sciences of Iowa State University
United States Department of Agriculture–National Institute of Food and Agriculture
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献