Affiliation:
1. College of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
2. Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, 48 Wenhui Eastern Road, Yangzhou 225009, Jiangsu Province, China
Abstract
Small cysteine-rich (SCR) proteins, including fungal avirulence proteins, play important roles in pathogen–plant interactions. SCR protein-encoding genes have been discovered in the genomes of Phytophthora pathogens but their functions during pathogenesis remain obscure. Here, we report the characterization of one Phytophthora capsici SCR protein (namely, SCR82) with similarity to Phytophthora cactorum phytotoxic protein PcF. The scr82 gene has 10 allelic sequences in the P. capsici population. Homologs of SCR82 were not identified in fungi or other organisms but in Phytophthora relative species. Initially, scr82 was weakly expressed during the mycelium, sporangium, and zoospore stages but quickly upregulated when the infection initiated. Both ectopic expression of SCR82 and recombinant yeast-expressed protein (rSCR82) caused cell death on tomato leaves. Upon treatment, rSCR82 induced plant defense responses, including the induction of defense gene expression, reactive oxygen species burst, and callose deposition. Knockout of scr82 in P. capsici by CRISPR/Cas9 severely impaired its virulence on host plants and significantly reduced its resistance against oxidative stress. Inversely, its overexpression increased the pathogen’s virulence and tolerance to oxidative stress. Our results collectively demonstrate that SCR82 functions as both an important virulence factor and plant defense elicitor, which is conserved across Phytophthora spp. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Funder
National Natural Science Foundation of China
Jiangsu Agriculture Science and Technology Innovation Fund
Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献