Evidence that the Biofungicide Serenade (Bacillus subtilis) Suppresses Clubroot on Canola via Antibiosis and Induced Host Resistance

Author:

Lahlali R.,Peng G.,Gossen B. D.,McGregor L.,Yu F. Q.,Hynes R. K.,Hwang S. F.,McDonald M. R.,Boyetchko S. M.

Abstract

This study investigated how the timing of application of the biofungicide Serenade (Bacillus subtilis QST713) or it components (product filtrate and bacterial cell suspension) influenced infection of canola by Plasmodiophora brassicae under controlled conditions. The biofungicide and its components were applied as a soil drench at 5% concentration (vol/vol or equivalent CFU) to a planting mix infested with P. brassicae at seeding or at transplanting 7 or 14 days after seeding (DAS) to target primary and secondary zoospores of P. brassicae. Quantitative polymerase chain reaction (qPCR) was used to assess root colonization by B. subtilis as well as P. brassicae. The biofungicide was consistently more effective than the individual components in reducing infection by P. brassicae. Two applications were more effective than one, with the biofungicide suppressing infection completely and the individual components reducing clubroot severity by 62 to 83%. The biofungicide also reduced genomic DNA of P. brassicae in canola roots by 26 to 99% at 7 and 14 DAS, and the qPCR results were strongly correlated with root hair infection (%) assessed at the same time (r = 0.84 to 0.95). qPCR was also used to quantify the transcript activity of nine host-defense-related genes in inoculated plants treated with Serenade at 14 DAS for potential induced resistance. Genes encoding the jasmonic acid (BnOPR2), ethylene (BnACO), and phenylpropanoid (BnOPCL and BnCCR) pathways were upregulated by 2.2- to 23-fold in plants treated with the biofungicide relative to control plants. This induced defense response was translocated to the foliage (determined based on the inhibition of infection by Leptosphaeria maculans). It is possible that antibiosis and induced resistance are involved in clubroot suppression by Serenade. Activity against the infection from both primary and secondary zoospores of P. brassicae may be required for maximum efficacy against clubroot.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3