Grape Sour Rot: A Four-Way Interaction Involving the Host, Yeast, Acetic Acid Bacteria, and Insects

Author:

Hall Megan E.1ORCID,Loeb Gregory M.1,Cadle-Davidson Lance1,Evans Katherine J.1,Wilcox Wayne F.1

Affiliation:

1. First and fifth authors: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, and New York State Agricultural Experiment Station, Cornell University, Geneva 14456; second author: Department of Entomology, New York State Agricultural Experiment Station, Cornell University; third author: United States Department of Agriculture–Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Tasmanian Institute of Agriculture, University...

Abstract

Sour rot, a disease affecting berries of cultivated Vitis spp. worldwide, has not been clearly defined. Reported symptoms of the disease include browning of the berry skin, oozing of disintegrated berry pulp, and the smell of acetic acid, all in the presence of fruit flies (Drosophila spp.). We determined acetic acid concentrations in multiple collections of symptomatic berries, isolated and identified microbes from them, and inoculated commonly isolated organisms into healthy berries with and without concurrent exposure to wild-type or axenic Drosophila melanogaster. Coinoculations combining one of several yeasts (Metschnikowia spp., Pichia spp., and a Saccharomyces sp.) plus an acetic acid bacterium (an Acetobacter sp. and Gluconobacter spp.) reproduced sour rot symptoms, defined here as decaying berries with a loss of turgor and containing acetic acid at a minimum of 0.83 g/liter, based on observed field levels. Symptoms developed only in the presence of D. melanogaster, either wild type or axenic, indicating a nonmicrobial contribution of these insects in addition to a previously suggested microbial role. We conclude that sour rot is the culmination of coinfection by various yeasts, which convert grape sugars to ethanol, and bacteria that oxidize the ethanol to acetic acid, and that this process is mediated by Drosophila spp.

Funder

Specialty Crops Research Initiative

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3