Mapping Quantitative Trait Loci Responsible for Resistance to Sheath Blight in Rice

Author:

Liu G.,Jia Y.,Correa-Victoria F. J.,Prado G. A.,Yeater K. M.,McClung A.,Correll J. C.

Abstract

Rice sheath blight (ShB), caused by the soilborne pathogen Rhizoctonia solani, annually causes severe losses in yield and quality in many rice production areas worldwide. Jasmine 85 is an indica cultivar that has proven to have a high level of resistance to this pathogen. The objective of this study was to determine the ability of controlled environment inoculation assays to detect ShB resistance quantitative trait loci (QTLs) in a cross derived from the susceptible cv. Lemont and the resistant cv. Jasmine 85. The disease reactions of 250 F5 recombinant inbred lines (RILs) were measured on the seedlings inoculated using microchamber and mist-chamber assays under greenhouse conditions. In total, 10 ShB-QTLs were identified on chromosomes 1, 2, 3, 5, 6, and 9 using these two methods. The microchamber method identified four of five new ShB-QTLs, one on each of chromosomes 1, 3, 5, and 6. Both microchamber and mist-chamber methods identified two ShB-QTLs, qShB1 and qShB9-2. Four of the ShB-QTLs or ShB-QTL regions identified on chromosomes 2, 3, and 9 were previously reported in the literature. The major ShB-QTL qShB9-2, which cosegregated with simple sequence repeat (SSR) marker RM245 on chromosome 9, contributed to 24.3 and 27.2% of total phenotypic variation in ShB using microchamber and mistchamber assays, respectively. qShB9-2, a plant-stage-independent QTL, was also verified in nine haplotypes of 10 resistant Lemont/Jasmine 85 RILs using haplotype analysis. These results suggest that multiple ShB-QTLs are involved in ShB resistance and that microchamber and mist-chamber methods are effective for detecting plant-stage-independent QTLs. Furthermore, two SSR markers, RM215 and RM245, are robust markers and can be used in marker-assisted breeding programs to improve ShB resistance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3