Author:
Brown C. R.,Mojtahedi H.,Zhang L.-H.,Riga E.
Abstract
Resistance to Meloidogyne chitwoodi was introgressed from Solanum bulbocastanum into the cultivated gene pool of potato. A single dominant gene is responsible for resistance to race 1 reproduction on the root system. An additional form of resistance was discovered in certain advanced backcross clones. A BC5 clone, PA99N82-4, resisted invasion of tubers by available nematode juveniles whether supplied by weeds or challenged by several root resistance-breaking pathotypes. This tuber resistance is inherited as a single dominant gene and is linked to RMc1(blb). Because this gene has been mapped to chromosome 11, tuber resistance genetic factors are inferred to be on the same chromosome in coupling phase. Among 153 progeny derived from crosses with PA99N82-4, 42 recombinants, comprising both resistant root/susceptible tuber and susceptible root/resistant tubers, were found while other progeny were doubly resistant (like PA99N82-4) or doubly susceptible. Therefore, the existence of two linked genetic factors controlling independently expressed traits is confirmed. The combination of the two phenotypes is likely to be a sufficient level of resistance to avoid tuber damage from circumstances that provide exogenous juveniles proximal to the tubers in the soil. These factors are weed hosts of M. chitwoodi host races and pathotypes of M. chitwoodi that overcome RMc1(blb). Under field conditions, where a resistance-breaking pathotype of M. chitwoodi was present, tuber-resistant PA99N82-4 breeding line produced tubers which were commercially acceptable and not culled. A related breeding line, root resistant but tuber susceptible, and Russet Burbank were severely tuber damaged and commercially unacceptable.
Subject
Plant Science,Agronomy and Crop Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献