Improving Management Strategies of Plant Diseases Using Sequential Sensitivity Analyses

Author:

Rimbaud Loup1ORCID,Dallot Sylvie1,Bruchou Claude2,Thoyer Sophie3,Jacquot Emmanuel1,Soubeyrand Samuel2,Thébaud Gaël1ORCID

Affiliation:

1. BGPI, INRA, Montpellier SupAgro, University of Montpellier, CIRAD, TA A-54/K, 34398 Montpellier Cedex 5, France

2. BioSP, INRA, Avignon, France

3. CEE-M, Montpellier SupAgro, INRA, CNRS, University of Montpellier, Montpellier, France

Abstract

Improvement of management strategies of epidemics is often hampered by constraints on experiments at large spatiotemporal scales. A promising approach consists of modeling the biological epidemic process and human interventions, which both impact disease spread. However, few methods enable the simultaneous optimization of the numerous parameters of sophisticated control strategies. To do so, we propose a heuristic approach (i.e., a practical improvement method approximating an optimal solution) based on sequential sensitivity analyses. In addition, we use an economic improvement criterion based on the net present value, accounting for both the cost of the different control measures and the benefit generated by disease suppression. This work is motivated by sharka (caused by Plum pox virus), a vector-borne disease of prunus trees (especially apricot, peach, and plum), the management of which in orchards is mainly based on surveillance and tree removal. We identified the key parameters of a spatiotemporal model simulating sharka spread and control and approximated optimal values for these parameters. The results indicate that the current French management of sharka efficiently controls the disease, but it can be economically improved using alternative strategies that are identified and discussed. The general approach should help policy makers to design sustainable and cost-effective strategies for disease management.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3