The FabA-FabB Pathway Is Not Essential for Unsaturated Fatty Acid Synthesis but Modulates Diffusible Signal Factor Synthesis in Xanthomonas campestris pv. campestris

Author:

Yu Yong-Hong12ORCID,Chen Cheng2,Ma Jian-Rong1,Zhang Yuan-Yin2,Yan Ming-Feng2,Zhang Wen-Bin2,Hu Zhe2,Wang Hai-Hong2ORCID,Ma Jin-Cheng2

Affiliation:

1. Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, China

2. Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China

Abstract

Most bacteria use type II fatty acid synthesis (FAS) systems for synthesizing fatty acids, of which the conserved FabA-FabB pathway is considered to be crucial for unsaturated fatty acid (UFA) synthesis in gram-negative bacteria. Xanthomonas campestris pv. campestris, the phytopathogen of black rot disease in crucifers, produces higher quantities of UFAs under low-temperature conditions for increasing membrane fluidity. The fabA and fabB genes were identified in the X. campestris pv. campestris genome by BLAST analysis; however, the growth of the X. campestris pv. campestris fabA and fabB deletion mutants was comparable to that of the wild-type strain in nutrient and minimal media. The X. campestris pv. campestris Δ fabA and Δ fabB strains produced large quantities of UFAs and, altogether, these results indicated that the FabA-FabB pathway is not essential for growth or UFA synthesis in X. campestris pv. campestris. We also observed that the expression of X. campestris pv. campestris fabA and fabB restored the growth of the temperature-sensitive Escherichia coli fabA and fabB mutants CL104 and CY242, respectively, under non-permissive conditions. The in-vitro assays demonstrated that the FabA and FabB proteins of X. campestris pv. campestris catalyzed FAS. Our study also demonstrated that the production of diffusible signal factor family signals that mediate quorum sensing was higher in the X. campestris pv. campestris Δ fabA and Δ fabB strains and greatly reduced in the complementary strains, which exhibited reduced swimming motility and attenuated host-plant pathogenicity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Funder

Guangzhou Science and Technology Plan Project

The Characteristic Innovation Program of Colleges and Universities in Guangdong

Science Foundation of Guangdong Food & Drug Vocational College

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3