New Thermoplastic Damping Polymeric Materials Based on Ethylene-Vinyl Acetate

Author:

Volotskoy Alexey,Yurkin Yuriy,Avdonin Valeriy

Abstract

This article is devoted to the problem of working out of damping polymer materials which are effective in the wide temperature and frequency range. In the modern world, work is being carried out to create damping polymer composite materials (DPM) from which it is possible to manufacture protective elements and parts of engineering structures of reduced vibration excitability. Existing DPM have a narrow temperature range, within which effective vibration absorption is observed, moreover, most of them go through a vulcanization stage, which increases the cost of the final product, has a harmful effect on environment and allows limited recycling of waste. One of the ways to solve this problem is to replace traditional rubber vibration-absorbing materials with thermo-elastoplasts (TEP). The most promising polymer for TEP is ethylene vinyl acetate (EVA), which has high damping properties, oil resistance and relative incombustibility. In this regard, experimental studies were conducted to establish the patterns of influence of the type and concentration of structure-forming components (plasticizers, fillers, modifiers) on the dynamic mechanical properties of TEP based on EVA in order to develop a new DPM effective in a wide temperature range. The leading method to investigate this problem is a method of dynamic mechanical analysis which allows to get information about changes of mechanical characteristics under mechanical load and controlled temperature and frequency. With the help of detected patterns it was possible to determine type of plasticizer which significantly decreases glass temperature of EVA. The percentage ratio of EVA/plasticizer system is stated, and the type of plasticizer at which the maximum of mechanical losses takes over greater values is accordingly detected. It is revealed, that to work out DPM on EVA basis, which are effective in wide temperature range it is more preferable to add not less than 40 % on volume basis inert fillers, such as talc or mica with addition of 5-10 % of carbon as the hardening additive. The kind of resin improving damping properties and raising rigidity of composites on EVA basis is defined. On the basis of the research, a material was developed which has the following properties: the maximum value of tan δ is at least 0.45 at a temperature of plus 5�C (oscillation frequency 10 Hz); width of the temperature interval within which tan δ is not less than 0.3 from minus 40 to plus 50�С (oscillation frequency 10 Hz); conditional tensile strength of not less than 10 kg/cm2, cold resistance up to minus 50�C.

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3