Improved YOLOv5l-based Detection of Surface Defects in Hot Rolled Steel Strips

Author:

Zhu Zhiren,Zhou Liming,Chen Fankai,Liu Chen,Meng Fanrun

Abstract

To address the problems of complex background, different sizes and easy to miss and mis-detect in the detection of surface defects in hot-rolled strip, an improved YOLOv5l-based method for detecting surface defects in hot-rolled strip is proposed. Firstly, by adding the SimAM attention mechanism module to the aggregation network, the important information is focused with high weights to improve the recall rate of the original algorithm; secondly, by replacing all C3 modules in the YOLOv5l structure with C2F, a richer gradient of information flow is obtained to improve the accuracy rate of the original algorithm. The experimental results show that the average detection accuracy using the improved YOLOv5l improves by 5.3% and the accuracy rate by 8.3% compared to the original network, resulting in higher detection accuracy and lower error and miss detection rates, meeting the requirements of hot-rolled strip steel inspection in industrial manufacturing.

Publisher

Darcy & Roy Press Co. Ltd.

Reference25 articles.

1. Li,Y., et al. "Progress in surface defect detection methods for strip steel." Journal of Iron and Steel Research . doi: 10. 13228/ j. boyuan. issn1001-0963.20220363.

2. Wang Meng." A multi-scale feature map-based method for detecting defects in strip steel." Digital Technology and Applications 40.04(2022):36-39. doi:10.19695/j.cnki.cn12-1369. 2022.04.12.

3. Zhang Yan,and Feng Feng." Exploration of strip steel surface defect detection technology." Information and Computer (Theoretical Edition) 33.11(2021):19-22.

4. Pan Meng, Zhou Deqiang,and Chang Xiang." Characterization of surface defect detection by a novel pulsed leakage magnetic detection method." Sensors and Microsystems 36.12 (2017): 32-35. doi:10.13873/J.1000-9787(2017)12-0032-04.

5. Wang B, et al. "A new eddy current detection method and its detection effect." Metallurgy of China 31.02(2021):50-54. doi:10.13228/j.boyuan.issn1006-9356.20200350.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study of YOLOv5 and YOLOv8 for Appearance Defect Detection in Polyester Fiber Yarn Packages;2023 16th International Symposium on Computational Intelligence and Design (ISCID);2023-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3