Aspect Based Sentiment Analysis with FastText Feature Expansion and Support Vector Machine Method on Twitter

Author:

Muhammad Afif Raihan ,Erwin Budi Setiawan

Abstract

Social media such as Twitter has now become very close to society. Twitter users can express current issues, their opinions, product reviews, and many other things both positive and negative. Twitter is also used by companies to monitor the assessment of their products among the public as insight that will be used to evaluate what aspects of their products need to be further developed. Twitter with its limitation of only allowing users to post a maximum tweet of 280 characters will make a lot of abbreviated and difficult to understand words used, so it will allow vocabulary mismatch problems to occur. Therefore, in this paper, research conducted on aspect-based sentiment analysis of Telkomsel’s products from the aspects of signal and service by applying feature expansion using Fasttext word embedding to overcome vocabulary mismatch problem and classification with the Support Vector Machine (SVM) method. Sampling technique with Synthetic Minority Oversampling Technique (SMOTE) used to overcome data imbalance. The experimental results show that feature expansion can increase the performance of model. The final results obtained F1-Score value of the model for the signal aspect increased by 27.91% with F1-Score 95.93%, and for the service aspect increased by 42.36% with F1-Score 94.53%.

Publisher

Ikatan Ahli Informatika Indonesia (IAII)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review and research contributions on aspect-based sentiment analysis using twitter data;Intelligent Decision Technologies;2023-11-20

2. Sentiment Analysis on Investment Education from Twitter using Ensemble Learning;2023 International Seminar on Application for Technology of Information and Communication (iSemantic);2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3