Evaluation of the Performance and Efficiency of the Automated Linguistic Features for Author Identification in Short Text Messages Using Different Variable Selection Techniques

Author:

Aljumily Refat

Abstract

The aim of this paper was to evaluate the efficiency of automated linguistic features to test its capacity or discriminating power as style markers for author identification in short text messages of the Facebook genre. The corpus used to evaluate the automated linguistics features was compiled from 221 Facebook texts (each text is about 2 to 3 lines/35-40 words) written in English, which were written in the same genre and topic and posted in the same year group, totaling 7530 words. To compose the dataset for linguistic features performance or evaluation, frequency values were collected from 16 linguistic feature types involving parts of speech, function words, word bigrams, character tri grams, average sentence length in terms of words, average sentence length in terms of characters, Yule’s K measure, Simpson’s D measure, average words length, FW/CW ratio, average characters, content specific key words, type/token ratio, total number of short words less than four characters, contractions, and total number of characters in words which were selected from five corpora, totalling 328 test features. The evaluation of the 16 linguistic feature types differ from those of other analyses because the study used different variable selection methods including feature type frequency, variance, term frequency/ inverse document frequency (TF.IDF), signal-noise ratio, and Poisson term distribution. The relationships between known and anonymous text messages were examined using hierarchical linear and non-hierarchical nonlinear clustering methods, taking into accounts the nonlinear patterns among the data. There were similarities between the anonymous text messages and the authors of the non-anonymous text messages in terms function word and parts of speech usages based on TF.IDF technique and the efficiency of function word usages (=60%) and the efficiency of parts of speech frequencies (=50%). There were no similarities between the anonymous text messages and the authors of the non-anonymous text messages in terms of the other features using feature type frequency and variance techniques in this test and the efficiency of these features in the corpus (< 40%). There was a positive effect on identification performance using parts of speech and function word frequency usages and applying TF.IDF technique as the length of text messages increased (N≥ 100). Through this way, the performance and efficiency of syntactic features and function word usages to identify anonymous authors or text messages is improved by increasing the length of the text messages using TF.IDF variable selection technique, but decreased as feature type frequency and variance techniques in the selection process apply.

Publisher

Redfame Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FORENSIC LINGUISTICS IN UNIVERSITY STUDY PROGRAMS: NEEDS, POSSIBILITIES, AND LIMITATIONS;Journal of International Legal Communication;2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3