Affiliation:
1. Directorate General of Education in Diyala Govgovernorate
2. UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION
Abstract
Growing Neural Gas (GNG) algorithm is an unsupervised learning algorithm which belongs to the competitive learning family. Since then, GNG has been a subject to vaious developments and implementations found in the literatures for two main reasons: first, the number of neurons (i.e., nodes) is adaptive. Meaning, it is periodically changed through adding new neurons and removing old neurons accordingly in order to find the best network which captures the topological structure of the given data, and to reduce the overall error in that representation. Second, GNG algorithm has no restrictions when compared to other competitive learning algorithms, as it is both free in the space and the number of the neurons. In this paper, we propose and implement an evolutionary based approach, namely PTGNG, to tune GNG algorithm parameters for dealing with data in multiple dimensional space, namely, 2D, 3D, and 4D. The idea basically relies on finding the optimum set of parameter values for any given problem to be solved using GNG algorithm. The evolutionary algorithm by its nature searches a vast space of applicable solutions and evaluates each solution individually. When we implemented our approach of parameters tuning, we can note that GNG captured datasets topological structure with a smaller number of neurons and with a better accuracy. It also showed that the same results appeared when working on datasets with three and four dimensions.
Publisher
International Journal of Computational and Experimental Science and Engineering (IJCESEN)
Reference27 articles.
1. [1] Fritzke, B. (1994). A growing neural gas network learns topologies. Advances in neural information processing systems, 7.
2. [2] Fritzke, B. (1997). Some competitive learning methods. Artificial Intelligence Institute, Dresden University of Technology, 100.
3. [3] Fritzke, B. (1994). Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural networks, 7(9), 1441-1460. DOI:10.1016/0893-6080(94)90091-4
4. [4] Martinetz, T. and Schulten, K. (1991), “A" neural-gas" network learns topologies,” Artif. Neural Networks, pp. 397–402.
5. [5] Qin, A. K., & Suganthan, P. N. (2004). Robust growing neural gas algorithm with application in cluster analysis. Neural networks, 17(8-9), 1135-1148. DOI:10.1016/s0893-6080(04)00166-2
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献