On a method for constructing the Green function of the Dirichlet problem for the Laplace equation

Author:

Kalmenov T.Sh.

Abstract

The study of boundary value problems for elliptic equations is of both theoretical and applied interest. A thorough study of model physical and spectral problems requires an explicit and effective representation of the problem solution. Integral representations of solutions of problems of differential equations are one of the main tools of mathematical physics. Currently, the integral representation of the Green function of classical problems for the Laplace equation for an arbitrary domain is obtained only in a two-dimensional domain by the Riemann conformal mapping method. Starting from the three-dimensional case, these classical problems are solved only for spherical sectors and for the regions lying between the faces of the hyperplane. The problem of constructing integral representations of general boundary value problems and studying their spectral problems remains relevant. In this work, using the boundary condition of the Newtonian (volume) potential and the spectral property of the potential of a simple layer, the Green function of the Dirichlet problem for the Laplace equation was constructed.

Publisher

Karagandy University of the name of academician E.A. Buketov

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3