Affiliation:
1. Bandırma onyedi eylül üniversitesi
Abstract
İdiyopatik Pulmoner Fibrozis (IPF); hâlihazırda etyolojisi bilinmeyen, kötü prognozlu, ileri derecede fibroz ile karakterize, kronik ve progresif olan bir akciğer hastalığıdır. Histolojik olarak olağan interstisyel pnömoni paterni ile karakterizedir. IPF hastalığının ilerlemesinin öngörülmesi bilinen tekniklerle henüz mümkün değildir. Fakat IPF’nin erken teşhisi, tedaviye erken başlamak için oldukça önemlidir. Bu araştırma çalışmasında, açık kaynaklardan alınan sınırlı sayıda Yüksek Çözünürlüklü Bilgisayarlı Tomografi (YÇBT) imajı IPF tanısında bu çalışma için kullanılmıştır. Çalışmanın amacı, yüksek çözünürlüklü Bilgisayarlı Tomografi (BT) tarama imajlarından faydalanarak IPF hastalığının erken teşhisine yardımcı olmaktır. Öncelikle, bu araştırmada kullanılan BT imaj verileri bir dizi ön işleme tekniklerine tabi tutulmuştur. 2310 hasta için toplam 502 özellik arasından, Özyinelemeli Öznitelik Eleme yöntemi (Recursive Feature Elimination) kullanılarak 25 alakalı özellik seçilmiştir. Ön işleme sürecinden sonra, BT imaj veri seti %80 eğitim ve %20 test kümelerine ayrılmıştır. Eğitim veri kümesine Üst Örnekleme (Random Oversampling) uygulanmıştır. Bu işlemden sonra, hazırlanan veri, Makine Öğrenmesi (ML), Topluluk Öğrenmesi (Ensemble Learning) ve Derin Öğrenme (Deep Learning) teknikleri ile eğitilmiştir. Yapılan çalışmada sonuç olarak İlgi Alanı (Region of Interest-ROI) düzeyinde Topluluk Öğrenmesi performansı sırasıyla %96,52 doğruluk, %86,45 hassasiyet ve %92.14 özgüllük olarak elde edilmiştir. Öncelikle, bu araştırmada kullanılan BT imaj verileri bir dizi ön işleme tekniklerine tabi tutulmuştur. 2310 hasta için toplam 502 özellik arasından, Özyinelemeli Öznitelik Eleme yöntemi (Recursive Feature Elimination) kullanılarak 25 alakalı özellik seçilmiştir. Ön işleme sürecinden sonra, BT imaj veri seti %80 eğitim ve %20 test kümelerine ayrılmıştır. Eğitim veri kümesine Üst Örnekleme (Random Oversampling) uygulanmıştır. Bu işlemden sonra, hazırlanan veri, Makine Öğrenmesi, Topluluk Öğrenmesi (Ensemble Learning) ve Derin Öğrenme (Deep Learning) teknikleri ile eğitilmiştir. Yapılan çalışmada sonuç olarak İlgi Alanı (Region of Interest-ROI) düzeyinde Topluluk Öğrenmesi performansı sırasıyla %96,52 doğruluk, %86,45 hassasiyet ve %92.14 özgüllük olarak elde edilmiştir.
Publisher
Balikesir Universitesi Fen Bilimleri Enstitusu Dergisi