Abstract
This study is devoted to investigate the Petrie paths in normalizer maps and the regular triangular maps corresponding to the subgroups $\Gamma_0(N)$ of the modular group $\Gamma$. We show that each regular triangular map admits a closed Petrie path. Thus, for each regular map, we find the Petrie length of the corresponding map.
Publisher
Universal Journal of Mathematics and Applications
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Reference12 articles.
1. [1] J.H. Conway, S.P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11, 308–339 (1977).
2. [2] N. Yazıcı Go¨zu¨tok, B.O¨ . Gu¨ler, Suborbital graphs for the group ΓC(N), Bull. Iran. Math. Soc., 45, 593–605 (2019).
3. [3] Y. Kesicio˘glu, M. Akbas¸, On suborbital graphs for the group Γ3, Bull. Iran. Math. Soc., 46, 1731–1744 (2020).
4. [4] B.O¨ . Gu¨ler, M. Bes¸enk, A.H. Deg˘er, S. Kader, Elliptic elements and circuits in suborbital graphs, Hacettepe J. Math. Stat., 40, 203–210 (2011).
5. [5] P. Jaipong, W. Promduang, K. Chaichana, Suborbital graphs of the congruence subgroup Γ0(N), Beitr. Algebra Geom., 60, 181–192 (2019).