Abstract
AbstractIn this paper, a two-species competitive model with Michaelis–Menten type harvesting in the first species is studied. We have made a detailed mathematical analysis of the model to describe some important results that may be produced by the interaction of biological resources. The permanence, stability, and bifurcation (saddle-node bifurcation and transcritical bifurcation) of the model are investigated. The results show that with the change of parameters, two species could eventually coexist, become extinct or one species will be driven to extinction and the other species will coexist. Moreover, by constructing the Lyapunov function, sufficient conditions to ensure the global asymptotic stability of the positive equilibrium are given. Our study shows that compared with linear harvesting, nonlinear harvesting can exhibit more complex dynamic behavior. Numerical simulations are presented to illustrate the theoretical results.
Funder
Natural Science Foundation of Fujian Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference40 articles.
1. Li, Z., Chen, F., He, M.: Almost periodic solutions of a discrete Lotka–Volterra competition system with delays. Nonlinear Anal., Real World Appl. 12(4), 2344–2355 (2011)
2. Li, Z., Han, M., Chen, F.: Influence of feedback controls on an autonomous Lotka–Volterra competitive system with infinite delays. Nonlinear Anal., Real World Appl. 14(1), 402–413 (2013)
3. Chen, B.: Global attractivity of a discrete competition model. Adv. Differ. Equ. 2016, Article ID 273 (2016)
4. Chen, B.: Permanence for the discrete competition model with infinite deviating arguments. Discrete Dyn. Nat. Soc. 2016, Article ID 1686973 (2016)
5. Chen, F., Xie, X., Miao, Z., et al.: Extinction in two species nonautonomous nonlinear competitive system. Appl. Math. Comput. 274, 119–124 (2016)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献