Periodic solutions for a kind of prescribed mean curvature Liénard equation with a singularity and a deviating argument
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Link
http://link.springer.com/content/pdf/10.1186/s13662-015-0474-y.pdf
Reference19 articles.
1. Fonda A, Manásevich R, Zanolin F: Subharmonic solutions for some second order differential equations with singularities. SIAM J. Math. Anal. 1993, 24: 1294–1311. 10.1137/0524074
2. Zhang M: Periodic solutions of Liénard equations with singular forces of repulsive type. J. Math. Anal. Appl. 1996, 203: 254–269. 10.1006/jmaa.1996.0378
3. Torres PJ: Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ. 2003, 190: 643–662. 10.1016/S0022-0396(02)00152-3
4. Jiang D, Chu J, Zhang M: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ. 2005, 211: 282–302. 10.1016/j.jde.2004.10.031
5. Lazer AC, Solimini S: On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc. 1987, 88: 109–114. 10.1090/S0002-9939-1987-0866438-7
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multiplicity of positive periodic solutions to third-order variable coefficients singular dynamical systems;Boundary Value Problems;2023-06-29
2. Positive periodic solution for prescribed mean curvature generalized Liénard equation with a singularity;Boundary Value Problems;2020-05-12
3. Singularities of attractive and repulsive type for p-Laplacian generalized Liénard equation;Advances in Difference Equations;2018-12
4. A new result on the existence of periodic solutions for Rayleigh equation with a singularity;Advances in Difference Equations;2017-12
5. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities;Journal of Inequalities and Applications;2017-08-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3