Abstract
AbstractLet $f: \mathbb{R}\rightarrow \mathbb{R}$
f
:
R
→
R
be a map and $\tau \in \mathbb{R}^{+}$
τ
∈
R
+
. The map f obeys the Shannon–Whittaker–Kotel’nikov theorem generalization (SWKTG) if $f(t)=\lim_{n\to \infty } ( \sum_{k\in \mathbb{Z}} f^{ \frac{1}{n}} (\frac{k}{\tau } ) \operatorname{sinc} (\tau t-k) )^{n}$
f
(
t
)
=
lim
n
→
∞
(
∑
k
∈
Z
f
1
n
(
k
τ
)
sinc
(
τ
t
−
k
)
)
n
for every $t\in \mathbb{R}$
t
∈
R
. The aim of the present paper is to characterize the perturbations of the map f that obeys SWKTG. Our results enlarge the catalog of maps that can be recomposed using SWKTG. We underline that maps obeying SWKTG play a central role in applications to chemistry and signal theory between other fields.
Funder
Ministerio de Ciencia, Innovación y Universidades
Fundación Séneca
Junta de Comunidades de Castilla-La Mancha
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference16 articles.
1. Antuña, A., Guirao, J.L.G., López, M.A.: An asymptotic sampling recomposition theorem for Gaussian signals. Mediterr. J. Math. 8, 349–367 (2011)
2. Antuña, A., Guirao, J.L.G., López, M.A.: Pseudo–radioactive decomposition through a generalized Shannon’s recomposition theorem. MATCH Commun. Math. Comput. Chem. 72(2), 403–410 (2014)
3. Antuña, A., Guirao, J.L.G., López, M.A.: Shannon–Whittaker–Kotel’nikov’s theorem generalized. MATCH Commun. Math. Comput. Chem. 73, 385–396 (2015)
4. Antuña, A., Guirao, J.L.G., López, M.A.: Shannon–Whittaker–Kotelnikov theorem generalized revisited. J. Math. Chem. 58, 893–905 (2020)
5. Butzer, P.L., Ries, S., Stens, R.L.: Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 50, 25–39 (1987)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献