Abstract
AbstractIn this paper, we aim to investigate the spectrum of the nonselfadjoint operator L generated in the Hilbert space $l_{2}(\mathbb{N},\mathbb{C}^{2})$
l
2
(
N
,
C
2
)
by the discrete Dirac system
$$ \textstyle\begin{cases} y_{n+1}^{ (2 )} - y_{n}^{ (2 )} + p_{n} y_{n}^{ (1 )} =\lambda y_{n}^{ (1 )},\\ - y_{n}^{ (1 )} + y_{n-1}^{ (1 )} + q_{n} y_{n}^{ (2 )} =\lambda y_{n}^{ (2 )}, \end{cases}\displaystyle \quad n\in \mathbb{N}, $$
{
y
n
+
1
(
2
)
−
y
n
(
2
)
+
p
n
y
n
(
1
)
=
λ
y
n
(
1
)
,
−
y
n
(
1
)
+
y
n
−
1
(
1
)
+
q
n
y
n
(
2
)
=
λ
y
n
(
2
)
,
n
∈
N
,
and the general boundary condition
$$ \sum_{n = 0}^{\infty } h_{n}y_{n} = 0, $$
∑
n
=
0
∞
h
n
y
n
=
0
,
where λ is a spectral parameter, Δ is the forward difference operator, ($h_{n}$
h
n
) is a complex vector sequence such that $h_{n} = ( h_{n}^{(1)}, h_{n}^{(2)} )$
h
n
=
(
h
n
(
1
)
,
h
n
(
2
)
)
, where $h_{n}^{(i)} \in l^{1} ( \mathbb{N} ) \cap l^{2} ( \mathbb{N} )$
h
n
(
i
)
∈
l
1
(
N
)
∩
l
2
(
N
)
, $i = 1,2$
i
=
1
,
2
, and $h_{0}^{(1)} \ne 0$
h
0
(
1
)
≠
0
. Upon determining the sets of eigenvalues and spectral singularities of L, we prove that, under certain conditions, L has a finite number of eigenvalues and spectral singularities with finite multiplicity.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference22 articles.
1. Levitan, B.M., Sargsian, I.S.: Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, vol. 39. Am. Math. Soc., Providence (1975)
2. Chadan, K., Sabatier, P.C.: Inverse Problems in Quantum Scattering Theory. Springer, Berlin (2012)
3. Naimark, M.A.: Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint differential operator of the second order on a semi-axis. Transl. Am. Math. Soc. (2) 16, 103–193 (1960)
4. Naimark, M.A.: Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Ungar, New York (1968) (Eng. Trans.)
5. Bairamov, E., Yokus, N.: Spectral singularities of Sturm–Liouville problems with eigenvalue-dependent boundary conditions. Abstr. Appl. Anal. 2009, 289596 (2009)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献