Abstract
AbstractThe purpose of this article is to introduce a modification of Phillips operators on the interval $[ \frac{1}{2},\infty ) $
[
1
2
,
∞
)
via a Dunkl generalization. We further define the Stancu type generalization of these operators as $\mathcal{S}_{n, \upsilon }^{\ast }(f;x)=\frac{n^{2}}{e_{\upsilon }(n\chi _{n}(x))}\sum_{\ell =0}^{\infty } \frac{(n\chi _{n}(x))^{\ell }}{\gamma _{\upsilon }(\ell )}\int _{0}^{\infty } \frac{e^{-nt}n^{\ell +2\upsilon \theta _{\ell }-1}t^{\ell +2\upsilon \theta _{\ell }}}{\gamma _{\upsilon }(\ell )}f ( \frac{nt+\alpha }{n+\beta } ) \,\mathrm{d}t$
S
n
,
υ
∗
(
f
;
x
)
=
n
2
e
υ
(
n
χ
n
(
x
)
)
∑
ℓ
=
0
∞
(
n
χ
n
(
x
)
)
ℓ
γ
υ
(
ℓ
)
∫
0
∞
e
−
n
t
n
ℓ
+
2
υ
θ
ℓ
−
1
t
ℓ
+
2
υ
θ
ℓ
γ
υ
(
ℓ
)
f
(
n
t
+
α
n
+
β
)
d
t
, $f\in C_{\zeta }(R^{+})$
f
∈
C
ζ
(
R
+
)
, and calculate their moments and central moments. We discuss the convergence results via Korovkin type and weighted Korovkin type theorems. Furthermore, we calculate the rate of convergence by means of the modulus of continuity, Lipschitz type maximal functions, Peetre’s K-functional and the second order modulus of continuity.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献