Abstract
AbstractA fractional-order eco-epidemiological model with disease in the prey population is formulated and analyzed. Mathematical analysis and numerical simulations are performed to clarify the characteristics of the proposed fractional-order model. The existence, uniqueness, non-negativity and boundedness of the solutions are proved. The local and global asymptotic stability of all equilibrium points are investigated. Finally, numerical simulations are conducted to illustrate the analytical results. The occurrence of Hopf bifurcations and transcritical bifurcations for the fractional-order eco-epidemiological model are demonstrated. It is observed that the fractional order has a stabilization effect and it may help to control the coexistence between susceptible prey, infected prey and predator populations.
Funder
Sponsors-Ministry of Education Malaysia (MOE), Division of Research and Innovation, Research Creativity and Management Office (RCMO), Universiti Sains Malaysia
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference60 articles.
1. Boccara, N.: Modeling Complex Systems. Springer, Berlin (2010)
2. Khajanchi, S.: Modeling the dynamics of stage-structure predator–prey system with Monod–Haldane type response function. Appl. Math. Comput. 302, 122–143 (2017)
3. Nosrati, K., Shafiee, M.: Dynamic analysis of fractional-order singular Holling type-II predator–prey system. Appl. Math. Comput. 313, 159–179 (2017)
4. Zhang, F., Chen, Y., Li, J.: Dynamical analysis of a stage-structured predator–prey model with cannibalism. Math. Biosci. 307, 33–41 (2019)
5. Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Stage structure and refuge effects in the dynamical analysis of a fractional order Rosenzweig–MacArthur prey–predator model. Prog. Fract. Differ. Appl. 5, 1–16 (2019)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献