Author:
Rezende Gustavo Lazzaro,Martins Ademir Jesus,Gentile Carla,Farnesi Luana Cristina,Pelajo-Machado Marcelo,Peixoto Alexandre Afrânio,Valle Denise
Abstract
Abstract
Background
One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing.
Results
We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed.
Conclusion
In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle.
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. Christophers SR: Aedes aegypti (L) The Yellow Fever Mosquito. Its Life History, Bionomics and Structure. 1960, Cambridge: Cambridge University Press
2. Clements AN: The biology of mosquitoes. Development, nutrition and reproduction. 1992, London: Chapman and Hall
3. Kliewer JW: Weight and hatchability of Aedes aegypti eggs. Ann Entomol Soc Am. 1961, 54: 912-917.
4. Beckel WE: Investigation of permeability, diapause, and hatching in the eggs of the mosquito Aedes hexodontus. Dyar. Can J Zool. 1958, 36: 541-54. 10.1139/z58-066.
5. Harwood RF, Horsfall WR: Development, structure, and function of coverings of eggs of floodwater mosquitoes. III. Functions of coverings. Ann Entomol Soc Am. 1959, 52: 113-16.
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献