Characterization of early maturing elite genotypes based on MTSI and MGIDI indexes: an illustration in upland cotton (Gossypium hirsutum L.)

Author:

D S Raj Supritha,Patil Rajesh S.ORCID,Patil Bhuvaneshwara R.,Nayak Spurthi N.,Pawar Kasu N.

Abstract

Abstract Background Globally, the cultivation of cotton is constrained by its tendency for extended periods of growth. Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change. In the current study, a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity. The study aimed to identify genotype(s) that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index (MTSI) and multi-trait genotype-ideotype distance index (MGIDI). Results MTSI analysis revealed that out of the 20 genotypes, three genotypes, viz., NNDC-30, A-2, and S-32 accomplished well in terms of early maturity traits in two seasons. Furthermore, three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%. The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening. The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings. However, there were negative gains for traits related to flowering and boll opening. Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities. The multivariate methods (MTSI and MGIDI) serve as novel approaches for selecting desired genotypes in plant breeding programs, especially across various growing environments. These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3