Author:
Li Xiaoman,Jia Qi,Zhou Yinyin,Jiang Xuan,Song Li,Wu Yuanyuan,Wang Aiyun,Chen Wenxing,Wang Shijun,Lu Yin
Abstract
Abstract
Background
Tanshinone II A is an effective component extracted from Salvia miltiorrhiza and the roles of Tanshinone IIA in regulating the stemness of tumor cells remain unclear. This work aims to explore the roles and underlying mechanisms of Tanshinone IIA in breast cancer stemness.
Methods
In vitro mammary spheroid formation, flow cytometry assay on CD24−/CD44+ sub-population, ALDH activity detection, cell viability assay and western blot analysis, and in vivo tumor-initiating analysis were performed to examine the effects of Tanshinone IIA on the stemness of breast cancer cells. MiRNAs-based transcriptome sequencing and data analysis, online dataset analysis, luciferase reporter assay combined with rescuing experiments were constructed to explore the underlying mechanisms.
Results
Tanshinone IIA attenuated the stemness of breast cancer cells, evident by downregulating the expression of stemness markers, hindering the capacity of spheroid formation, decreasing the CD24−/CD44+ sub-population in a concentration-dependent manner and reducing the tumor-initiating ability of breast cancer cells. Additionally, Tanshinone IIA enhanced adriamycin sensitivity and attenuated adriamycin resistance of breast cancer cells. Combined with miRNAs-based transcriptome sequencing assay, it was found that Tanshinone IIA downregulated miR-125b level and upregulated its target gene STARD13 (StAR-related lipid transfer protein 13) level, thus inactivating the miR-125b/STARD13 axis, which had been previously confirmed to promote breast cancer progression. Notably, miR-125b overexpression enhanced the stemness of breast cancer cells, and miR-125b overexpression or STARD13 knockdown impaired the inhibitory effects of Tanshinone IIA on the stemness of breast cancer cells.
Conclusions
Tanshinone IIA could attenuate the stemness of breast cancer cells via targeting the miR-125b/STARD13 axis.
Funder
national natural science foundation of china
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Hematology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献