Tanshinone IIA attenuates the stemness of breast cancer cells via targeting the miR-125b/STARD13 axis

Author:

Li Xiaoman,Jia Qi,Zhou Yinyin,Jiang Xuan,Song Li,Wu Yuanyuan,Wang Aiyun,Chen Wenxing,Wang Shijun,Lu Yin

Abstract

Abstract Background Tanshinone II A is an effective component extracted from Salvia miltiorrhiza and the roles of Tanshinone IIA in regulating the stemness of tumor cells remain unclear. This work aims to explore the roles and underlying mechanisms of Tanshinone IIA in breast cancer stemness. Methods In vitro mammary spheroid formation, flow cytometry assay on CD24/CD44+ sub-population, ALDH activity detection, cell viability assay and western blot analysis, and in vivo tumor-initiating analysis were performed to examine the effects of Tanshinone IIA on the stemness of breast cancer cells. MiRNAs-based transcriptome sequencing and data analysis, online dataset analysis, luciferase reporter assay combined with rescuing experiments were constructed to explore the underlying mechanisms. Results Tanshinone IIA attenuated the stemness of breast cancer cells, evident by downregulating the expression of stemness markers, hindering the capacity of spheroid formation, decreasing the CD24/CD44+ sub-population in a concentration-dependent manner and reducing the tumor-initiating ability of breast cancer cells. Additionally, Tanshinone IIA enhanced adriamycin sensitivity and attenuated adriamycin resistance of breast cancer cells. Combined with miRNAs-based transcriptome sequencing assay, it was found that Tanshinone IIA downregulated miR-125b level and upregulated its target gene STARD13 (StAR-related lipid transfer protein 13) level, thus inactivating the miR-125b/STARD13 axis, which had been previously confirmed to promote breast cancer progression. Notably, miR-125b overexpression enhanced the stemness of breast cancer cells, and miR-125b overexpression or STARD13 knockdown impaired the inhibitory effects of Tanshinone IIA on the stemness of breast cancer cells. Conclusions Tanshinone IIA could attenuate the stemness of breast cancer cells via targeting the miR-125b/STARD13 axis.

Funder

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3