Pan-cancer transcriptional atlas of minimal residual disease links DUSP1 to chemotherapy persistence
-
Published:2024-04-16
Issue:1
Volume:13
Page:
-
ISSN:2162-3619
-
Container-title:Experimental Hematology & Oncology
-
language:en
-
Short-container-title:Exp Hematol Oncol
Author:
Liu Yuanhui,Peng Bi,Chen Ziqi,Shen Yimin,Zhang Jingmin,Yuan Xianglin
Abstract
AbstractChemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most significantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for preventing and eliminating MRD, which could lead to long-term survival benefits for patients.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Marine JC, Dawson SJ, Dawson MA. Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 2020;20(12):743–56. 2. Seo I, Lee HW, Byun SJ, Park JY, Min H, Lee SH, Lee JS, Kim S, Bae SU. Neoadjuvant chemoradiation alters biomarkers of anticancer immunotherapy responses in locally advanced rectal cancer. J Immunother Cancer. 2021;9(3):e001610. 3. Park YH, Lal S, Lee JE, Choi YL, Wen J, Ram S, Ding Y, Lee SH, Powell E, Lee SK, Yu JH, Ching KA, Nam JY, Kim SW, Nam SJ, Kim JY, Cho SY, Park S, Kim J, Hwang S, Kim YJ, Bonato V, Fernandez D, Deng S, Wang S, Shin H, Kang ES, Park WY, Rejto PA, Bienkowska J, Kan Z. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun. 2020;11(1):6175. 4. Artibani M, Masuda K, Hu Z, Rauher PC, Mallett G, Wietek N, Morotti M, Chong K, KaramiNejadRanjbar M, Zois CE, Dhar S, El-Sahhar S, Campo L, Blagden SP, Damato S, Pathiraja PN, Nicum S, Gleeson F, Laios A, Alsaadi A, Santana Gonzalez L, Motohara T, Albukhari A, Lu Z, Bast RC Jr, Harris AL, Ejsing CS, Klemm RW, Yau C, Sauka-Spengler T, Ahmed AA. Adipocyte-like signature in ovarian cancer minimal residual disease identifies metabolic vulnerabilities of tumor-initiating cells. JCI Insight. 2021;6(11):e147929. 5. Tang F, Li J, Qi L, Liu D, Bo Y, Qin S, Miao Y, Yu K, Hou W, Li J, Peng J, Tian Z, Zhu L, Peng H, Wang D, Zhang Z. A pan-cancer single-cell panorama of human natural killer cells. Cell. 2023;186(19):4235-4251.e20.
|
|