Abstract
Abstract
Background
Determining the cytotoxicity of test substances is essential for the safety assessment of chemicals. To quantify the cytotoxicity, dose–response curves are determined and the half-maximum inhibitory concentration (IC50) is subsequently calculated. Results often rely on a single endpoint evaluation which typically requires manual sampling and subsequent sample analysis to determine the IC50. Hence, no information on culture behavior are available during treatment. Here, measurement of the oxygen transfer rate (OTR) was applied as a method for time-resolved assessment of the cytotoxicity to (a) provide information on culture behavior during treatment and (b) quantitatively assess the cytotoxic effect of a test substance.
Results
To investigate the applicability of the method, different types and concentrations of test substances were added and the OTR was measured for two different CHO suspension cell lines in shake flasks: (a) For CHO cell line one, culture behavior was not affected when 0.1 mM ZnCl2 was added. However, for both cell lines, adding up to 0.2 mM CoCl2 led to a decrease in the OTR that was concentration dependent. For CHO cell line two, adding up to 5% DMSO led to a concentration-dependent decrease in the OTR and in the slope of the OTR; (b) From the measured OTR, dose–response curves were established and used to calculate the IC50. For cell line one, the IC50 for CoCl2 was 0.03 mM while the IC50 from a comparative measurement based on trypan blue exclusion was 0.06 mM. Cell line two was less susceptible to CoCl2 as the IC50 was not reached at the concentrations tested. For DMSO, single OTR values and determined slopes were used for evaluation. In both cases, the IC50 was calculated to 2.3%.
Conclusions
Our approach provides a method for analyzing the cytotoxicity of a test substance based on OTR measurements. This method provides (i) insights on culture behavior, (ii) information on the progression of cytotoxicity, (iii) dose–response curves, and (iv) a first indication of IC50 values. Quantitative assessment of cytotoxicity is possible non-invasively and in real-time during treatment. Compared to traditional endpoint evaluation, our method simplifies experimentations and enhances the comparison of assay results.
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162. https://doi.org/10.1016/s1369-703x(00)00116-9
2. Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194. https://doi.org/10.1016/S1369-703X(03)00181-5
3. Aslantürk ÖS (2017) In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. In: Larramendy ML, Soloneski S (eds) Genotoxicity—a predictable risk to our actual world. IntechOpen, London
4. Bae SH, Che JH, Seo JM, Jeong J, Kim ET, Lee SW et al (2012) In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Invest Ophthalmol Vis Sci 53(6):2653–2657. https://doi.org/10.1167/iovs.11-9341
5. Bohets HH, Nouwen EJ, De Broe ME, Dierickx PJ (1994) Effects of foetal calf serum on cell viability, cytotoxicity and detoxification in the two kidney-derived cell lines LLC-PK1 and MDCK. Toxicol In Vitro 8(4):559–561. https://doi.org/10.1016/0887-2333(94)90016-7
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献