Comparing the European Union System for the Evaluation of Substances (EUSES) environmental exposure calculations with monitoring data for alkyl sulphate surfactants

Author:

Spaniol Oliver,Bergheim Marlies,Dawick James,Kötter Denise,McDonough Kathleen,Schowanek Diederik,Stanton Kathleen,Wheeler James,Willing AndreasORCID

Abstract

Abstract Background The European surfactant and detergent industry initiated a project to conduct an EUSES-based environmental exposure assessment for the total volume of alkyl sulfate (AS) surfactants, and to verify if the EUSES assessment leads to a realistic prediction of the environmental exposure or to an over- respectively under-estimation of the environmental concentrations of the surfactants. Verification of the EUSES environmental concentration prediction (Clocaleffluent) was carried out by benchmarking them against environmental monitoring data. Recently published data from the United States of America adjusted to the European Union (EU) frame conditions were used for the assessment, as for the EU only historical data from the mid-1990s are available. In addition to the standard (default) EUSES assessment, a higher tier assessment using substance-specific properties, particularly increased biodegradation rates (192 per day instead of the default of 24 per day for WWTP), was conducted. Results A figure of 178,400 tonnes of AS was established as the total maximum volume (2016) handled annually in Europe. This total volume includes the volumes from all EU manufacturers and all registered AS > 100 t/a, as well as the amount of AS contained in EU REACH registered alkyl ether sulfates (AES). The total tonnage was split and assigned to the different uses as reported to ECHA in the C12 AS, Na (151-21-3) registration dossier in 2010. The EUSES calculation was limited to widespread (professional and consumer) uses, covering in total 97,889 t of AS homologues. The EUSES calculation gave a Clocaleffluent of 335 µg/L for the SimpleTreat “readily” biodegradation rate default and a Clocaleffluent of 44.6 µg/L for the AS-specific degradation rates. Recent US monitoring data showed a mean effluent concentration of 4.24 µg alkyl sulfates/L (∑ C12 + C14 + C16 homologues). Taking into account the different annual per capita AS use (including AS from AES) in the US (295 g) and the EU (348 g), the daily per capita water use (EU 200 L, US 408 L), and the WWTP efficiency in the EU and the US (comparable), an US to EU adjustment factor of 2.4 was established. Application of the adjustment factor to the US monitoring data resulted in a calculated EU mean effluent concentration = 10.18 µg alkyl sulfates/L (∑ C12, C14, C16 homologues). This value was used as an independent benchmark for the EUSES calculations. Conclusions Comparing the predicted Clocaleffluent = 335 µg alkyl sulfates/L (SimpleTreat default) and a Clocaleffluent = 44.6 µg Alkyl Sulfates/L (AS-specific degradation rates) with the 10.18 µg alkyl sulfates/L from the adjusted monitoring data it is evident, that the EUSES calculation overestimates the AS environmental exposure by factors of > 32 and > 4, respectively. Taking into consideration, that only widespread uses (covering only 50% of the total AS volume) were included in the EUSES calculation, the overestimation of the default exposure by a factor of 4 is still conservative, despite the fact, that eightfold higher, substance-specific biodegradation rates were used. In conclusion, using the 2010 C12-AS REACH dossier (CAS-No. 151-21-3) as an example, it has been shown, that EUSES model exposure calculations using default biodegradation rates significantly overestimate effluent concentrations.

Funder

ERASM

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference19 articles.

1. European Chemicals Agency 2016 (2016) Guidance on information requirements and chemical safety assessment chapter R.16: environmental exposure assessment. Helsinki: ECHA.

2. European Commission (EC) (2012) EU wide monitoring survey on waste water treatment plant effluents. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC76400/lb-na-25563-en.pdf.pdf. Accessed May 2020.

3. Eurostat (7/10/2018): EU population up to nearly 513 million on 1 January 2018. Increase driven by migration. https://ec.europa.eu/eurostat/documents/2995521/9063738/3-10072018-BP-EN.pdf/ccdfc838-d909-4fd8-b3f9-db0d65ea457f. Accessed Dec 2019.

4. Federle TW, Itrich NR (1996a) Aerobic die-away of tetradecyl sulfate (X0556.01R) in activated sludge from Sycamore sewage treatment plant. Testing laboratory: Environmental Science Department, Ivorydale Technical Center, Cincinnati, OH 45217. Report no.: E95-023. Owner company: Procter & Gamble Eurocor, Strombeek Bever, Belgium. Study number: 35966. Report date: 1996-01-08.

5. Federle TW, Itrich NR (1996b) Fate of surfactants in river water. Testing laboratory: Environmental Science Department, Ivorydale Technical Center, Cincinnati, Ohio 45217. Report No.: E94-009. Owner company: Procter & Gamble Eurocor, Strombeek Bever, Belgium. Study number: 35563. Report date: 1996-01-08.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3