Linking biological toxicity and the spectral characteristics of contamination in seriously polluted urban rivers

Author:

Chen Zhongli,Zhu Zihan,Song Jiyu,Liao Ruiyan,Wang Yufan,Luo Xi,Nie Dongya,Lei Yumeng,Shao YingORCID,Yang Wei

Abstract

Abstract Background Urban river pollution risks to environments and human health are emerging as a serious concern worldwide. With the aim to achieve the health of urban river ecosystem, numerous monitoring programs have been implemented to investigate the spectral characteristics of contamination. While due to the complexity of aquatic pollutants, the linkages between harmful effects and the spectral characteristics of contamination are still a major challenge for capturing main threats to urban aquatic environments. To establish these linkages, surface water (SW), sediment pore water (SDPW), and riparian soil pore water (SPW) were collected from five sites of the seriously polluted Qingshui Stream, China. The water-dissolved organic carbon (DOC), total nitrogen (TN), total phosphate (TP), fluorescence excitation–emission matrix, and specific ultraviolet absorbance were applied to analyze the spectral characteristics of urban river contamination. The Photobacterium phosphorem 502 was used to test the acute toxicity of the samples. Finally, the correlations between acute toxicity and concentrations of DOC, TN, TP, and the spectral characteristics were explored. Results The concentrations of DOC, TN, and TP in various samples amounted from 11.41 ± 2.31 to 3844.67 ± 87.80 mg/L, from 1.96 ± 0.06 to 906.23 ± 26.01 mg/L and from 0.06 ± 0.01 to 101.00 ± 8.29 mg/L, respectively. The florescence index (FI) amounted from 1.54 to 3.14, the biological index (BIX) were between 0.94 and 1.57. The distribution patterns of specific ultraviolet absorbance at 254 nm (SUVA254) showed that the highest aromaticity and hydrophobicity were found in SDPW and the lowest ones were in SW. All samples showed significantly inhibition on luminescent bacteria. Particularly, the highest acute toxicity was found in site 1 with an EC50 value of 6.023-fold dilution for the raw SDPW sample. In addition, the highest fluorescence intensity was also observed from SDPW of site 1. Conclusions Tryptophan-like and protein-like substances could be important DOC fractions contributing remarkably to the acute toxicity in the seriously polluted river. In addition, the significant reduction on acute toxicity was found with the treatment of surface water flow constructed wetland, revealing that constructed wetland could be an effective approach for toxicant degradation. These observations are useful for water treatments, and meaningful for urban sustainable development.

Funder

Fundamental Research Funds for the Central Universities

Venture and Innovation Support Program for Chongqing Overseas Returnees

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference49 articles.

1. Booth DB, Karr JR, Schauman S, Konrad CP, Morley SA, Larson MG, Burges SJ (2004) Riviving urban streams: land use, hydrology, biology, and human behavior. JAWRA 40:1351–1364

2. UNDP. Sustainable development goals. 2019. https://www.undp.org/content/undp/en/home/sustainable-development-goals.html . Accessed 10 July 2019

3. WHO (2010) Bulletin of the World Health Organization. World Health Organization, Geneva, pp 241–320

4. Hughes RM, Dunham S, Maas-Hebner KG, Yeakley JA, Schreck C, Harte M, Molina N, Shock CC, Kaczynski VW, Schaeffer J (2014) A review of urban water body challenges and approaches: (1) rehabilitation and remediation. Fisheries. 39:18–29

5. Booth DB, Roy AH, Smith B, Capps KA (2016) Global perspectives on the urban stream syndrome. Freshw Sci 35:412–420

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3