Is micropollutant-loaded powdered activated carbon from a wastewater treatment plant toxic to the bivalve Corbicula sp.?

Author:

Woermann MarionORCID,Zimmermann Sonja,Sures Bernd

Abstract

AbstractBackgroundIn order to reduce emissions of micropollutants (MPs) via effluents of wastewater treatment plants (WWTPs), additional treatment steps are suggested and already deployed in selected WWTPs. Next to advanced oxidation processes, the application of powdered activated carbon (PAC) is considered a promising and suitable option as MP removal rates of 80% and more can be achieved. However, this method might also hold a drawback as a complete retention of PAC applied within the WWTP cannot always be guaranteed. Hence, small amounts of MP-loaded PAC can enter receiving waters with potentially negative consequences for aquatic organisms. The present study investigated possible effects of MP-loaded PAC from a WWTP as compared to unloaded, native PAC on the bivalveCorbicula sp. in a 10-week exposure experiment. The PAC types were administered in concentrations of 1, 10 and 100 mg/L in a semi-static sediment–water system.ResultsMolecular biomarker responses for xenobiotic metabolism (i.e., glutathione-S-transferase (GST)) and oxidative stress (i.e., catalase (CAT) activity and lipid peroxidation) were analyzed and in none of the treatments, significant differences to the control could be detected, except for the CAT activity in the 1 mg/L PACWWTPtreatment. Moreover, the filtration rate of individual bivalves was measured after 5 and 10 weeks of exposure and compared to the initial filtration rate with the result that the presence of PAC did not affect the filtration rate ofCorbicula sp. In summary, despite the selection of sensitive endpoints and a comparatively long exposure period, no significant effects were detected for unloaded and MP-loaded PAC even at the highest test concentration, which is far away from environmental relevance.ConclusionsThese results give an auspicious perspective for the application of PAC in WWTPs. Even when small PAC leakages from WWTPs occur, adverse effects for aquatic organisms appear to be neglectable based on our findings.

Funder

Bezirksregierung Münster, Germany

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3