Effect-based monitoring of chemical hazards in drinking water from source to tap: seasonal trends over 2 years of sampling

Author:

Lundqvist Johan,Lavonen Elin,Mandava Geeta,Selin Erica,Ejhed Helene,Oskarsson Agneta

Abstract

AbstractDrinking water producers have a far-reaching responsibility to provide safe, clean and wholesome drinking water, using water resources possibly effected by the thousands of chemicals used in societies’ daily life. This study has monitored chemical hazards in drinking water from source to tap, using effect-based methods. The study was conducted at a Swedish drinking water treatment plant sourcing lake water and aimed to investigate potential seasonal variations in both the raw water and water after different treatment steps. Furthermore, a granular activated carbon (GAC) pilot facility was evaluated. Samples were analyzed for estrogenicity, androgenicity, aryl hydrocarbon receptor (AhR) activity, oxidative stress (Nrf2) response and genotoxicity (micronucleus formation). We observed seasonal differences in oxidative stress and genotoxic effects in both raw and drinking water with higher activities during the late fall of each year. The removal efficiency for both oxidative stress and genotoxicity was limited in the full-scale treatment process and occasionally the genotoxicity was also detected in outgoing drinking water from the treatment plant and in samples collected at consumers tap on the distribution network. AhR activity was present in all raw water samples and the removal was limited. Estrogenic activities were observed in most of the raw water samples but in contrast to the other parameters estrogenicity was effectively reduced by the full-scale conventional treatment. The GAC pilot treatment was generally more efficient than the full-scale conventional treatment in removing all observed bioactivities and could be a viable complement to the current treatment to assure drinking water free from genotoxic compounds. Genotoxic activities in drinking water was observed while all currently regulated chemical parameters were fulfilled. This highlights the need for effect-based monitoring in efforts to ensure the chemical safety of drinking water, as target chemical analysis of single compounds will overlook both unknown hazardous compounds as well as potential mixture effects. Graphical Abstract

Funder

Svenska Forskningsrådet Formas

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3